

MODELO DE TURBULÊNCIA MACROSCÓPICA EM MEIOS POROSOS SATURADOS E INDEFORMÁVEIS

Marcos Heinzelmann Junqueira Pedras Instituto de Pesquisa e Desenvolvimento IP&D, UNIVAP Av. Shishima Hifumi, 2911-São José dos Campos-SP, Brasil Marcelo J.S. de Lemos Departamento de Energia - IEME Instituto Tecnológico de Aeronáutica - ITA 12228-900 – São José dos Campos, SP, Brasil - E-mail: *mdelemos@tecsat.com.br*

Resumo. Encontram-se na literatura duas abordagens para o desenvolvimento de modelos de turbulência em meios porosos. A primeira parte inicialmente das equações macroscópicas do escoamento utilizando o modelo estendido Darcy-Forchheimer. A segunda parte das equações microscópicas do escoamento. As duas abordagens levam a modelos $k - \varepsilon$ distintos os quais serão aqui abordado.

Palavras-chave: Meios porosos, Média temporal e volumétrica, Tensor de Reynolds, Modelo de Turbulência

1. INTRODUÇÃO

Na literatura encontramos dois tipos de abordagens para o desenvolvimento de modelos de turbulência em meios porosos. Na primeira abordagem (Lee & Howell, 1987; Wang & Takle, 1995; Antohe & Lage, 1997), aplica-se a média temporal nas equações macroscópicas do escoamento. Esse procedimento é adotado alegando-se que o meio poroso interage com o escoamento instantâneo e não com o escoamento médio no tempo (representação média no tempo do mesmo). Tal afirmação é verdadeira assim como o meio poroso interage com o escoamento microscópico e não com a representação macroscópica do mesmo. Além disso, se a representação média do escoamento instantâneo não fosse adequada, todos os cálculos em escoamentos turbulentos internos ou sobre corpos que utilizam esse conceito não dariam bons resultados. Pois, assim como o meio poroso interage de fato com o escoamento instantâneo, as paredes e os corpos nesses escoamentos também o fazem. Na segunda abordagem (Masuoka & Takatsu, 1996; Kuwahara et al., 1998; Takatsu & Masuoka, 1998), aplica-se a média volumétrica na equação microscópica do escoamento médio. Ou seja, na primeira abordagem aplica-se primeiro a média volumétrica nas equações microscópicas instantâneas e, em seguida, a média temporal; na segunda abordagem a ordem da aplicação das médias é invertida.

Recentemente Pedras & de Lemos (1999) mostraram que as duas abordagens chegam aos mesmos resultados em termos das equações de conservação macroscópicas do escoamento

(continuidade, momentum e energia), quando o meio poroso é indeformável e saturado por um fluido monofásico.

Entretanto, no desenvolvimento da equação macroscópica da energia cinética turbulenta, k, e da dissipação da energia cinética turbulenta, ε , as diferentes abordagens levam a resultados distintos os quais serão aqui esclarecidos.

2. OPERADORES DE MÉDIA

2.1 Teorema da média volumétrica local

As equações de conservação macroscópicas num meio poroso podem ser obtidas por médias volumétricas das equações de conservação microscópicas, em relação a um volume elementar representativo do meio poroso, ΔV (Bear, 1972), Figura 1.

Figura 1- Volume elementar representativo, ΔV , média volumétrica intrínseca, flutuação espacial e temporal.

Para uma propriedade geral, φ , associada ao fluido, a média volumétrica intrínseca, $\langle \varphi \rangle^i$, e a média volumétrica com relação a ΔV , $\langle \varphi \rangle^{\nu}$, são relacionadas através da porosidade ϕ por

$$\langle \varphi \rangle^{i} = \frac{1}{\Delta V_{f}} \int_{\Delta V_{f}} \varphi dV \; ; \; \langle \varphi \rangle^{\nu} = \phi \langle \varphi \rangle^{i} \; ; \; \phi = \frac{\Delta V_{f}}{\Delta V} \; , \tag{1}$$

onde ΔV_f é o volume de fluido contido em ΔV . A propriedade φ pode, então, ser definida como sendo a soma de $\langle \varphi \rangle^i$ mais um termo relacionado à flutuação espacial ${}^i\varphi$ (Whitaker, 1969),

$$\varphi = \langle \varphi \rangle^i + {}^i \varphi \,, \tag{2}$$

donde conclui-se que $\langle {}^{i}\varphi \rangle^{i} = 0$. A Figura 1 mostra a interpretação da Eq. (2) para uma propriedade vetorial (ex. velocidade) em uma determinada posição **x**, onde verifica-se que a

flutuação espacial é a diferença entre o valor real (microscópico) da propriedade em questão e a sua média volumétrica intrínseca.

Nestes processos de média, três comprimentos característicos devem ser definidos (Whitaker, 1969): 1) o comprimento microscópico característico, *d*, que representa a distância sobre a qual verificam-se significantes variações na velocidade microscópica do fluido, \mathbf{u} ; 2) comprimento macroscópico característico, *L*, sobre o qual verificam-se significantes variações na velocidade macroscópica do fluido, $\langle \mathbf{u} \rangle^{\nu}$; 3) e o comprimento característico, *l*, relacionado com o volume elementar representativo, ΔV .

A princípio, assume-se que *l* deve ser muito maior que *d* (*d* << *l*) e que $\langle \varphi \rangle^{\nu} = \langle \langle \varphi \rangle^{\nu} \rangle^{\nu}$; Whitaker (1969) mostra que para $\langle \varphi \rangle^{\nu} = \langle \langle \varphi \rangle^{\nu} \rangle^{\nu}$ é necessário que *l* << *L*.

Na derivação das equações macroscópicas, é necessário que se conheça a relação entre a média volumétrica das derivadas e a derivada das médias volumétricas. Tais relações foram desenvolvidas por Slattery (1967), Whitaker (1969), Gray & Lee (1977) e outros, sendo atualmente denominadas de teorema da média volumétrica local e definidas por:

$$\langle \nabla \varphi \rangle^{\nu} = \nabla (\phi \langle \varphi \rangle^{i}) + \frac{1}{\Delta V} \int_{A_{i}} \mathbf{n} \varphi dS , \qquad (3)$$

$$\langle \nabla \cdot \mathbf{\phi} \rangle^{\nu} = \nabla \cdot (\phi \langle \mathbf{\phi} \rangle^{i}) + \frac{1}{\Delta V} \int_{A_{i}} \mathbf{n} \cdot \mathbf{\phi} \, dS \tag{4}$$

e
$$\langle \frac{\partial \varphi}{\partial t} \rangle^{\nu} = \frac{\partial}{\partial t} (\phi \langle \varphi \rangle^{i}) - \frac{1}{\Delta V} \int_{A_{i}} \mathbf{n} \cdot (\mathbf{u}_{i} \varphi) dS ,$$
 (5)

onde A_i e \mathbf{u}_i representam, respectivamente, a área e a velocidade da interface da fase f e \mathbf{n} é o vetor unitário normal à A_i . No caso de escoamento monofásico, a fase f é o próprio fluido e $\mathbf{u}_i = 0$, se o meio poroso for indeformável (tem-se apenas a interface fluido/sólido).

No desenvolvimento das Eqs. (3), (4) e (5) a única restrição imposta é a independência de ΔV em relação ao tempo e espaço. Se o meio for indeformável, então ΔV_f será apenas dependente do espaço e não do tempo (Gray & Lee, 1977).

2.2 Média temporal

As equações de conservação microscópicas mediadas no tempo podem ser obtidas através da média temporal das equações de conservação microscópicas instantâneas. Para tanto, é necessário definir a média temporal de uma determinada propriedade, φ , associada ao fluido, que é dada por:

$$\overline{\varphi} = \frac{1}{\Delta t} \int_{t}^{t+\Delta t} \varphi dt \,, \tag{6}$$

onde Δt é o intervalo de tempo escolhido, de forma que seja longo comparado com a escala de tempo das flutuações temporais e curto quando comparado com a escala de tempo necessária para que as variações ordenadas ocorram. A propriedade instantânea φ pode, então, ser definida como a soma de sua média temporal, $\overline{\varphi}$, mais a sua flutuação temporal, φ' :

$$\varphi = \overline{\varphi} + \varphi', \tag{7}$$

sendo $\overline{\varphi}' = 0$.

2.3 Comutatividade entre as médias

Das definições de média volumétrica (Eq. 1) e média temporal (Eq. 6), conclui-se que a média temporal da média volumétrica de uma determinada propriedade, φ , é dada por:

$$\overline{\langle \boldsymbol{\varphi} \rangle^{\nu}} = \frac{1}{\Delta t} \int_{t}^{t+\Delta t} \left[\frac{1}{\Delta V} \int_{\Delta V_{f}} \boldsymbol{\varphi} dV \right] dt , \qquad (8)$$

e média volumétrica da média temporal por:

$$\langle \overline{\varphi} \rangle^{\nu} = \frac{1}{\Delta V} \int_{\Delta V_f} \left[\frac{1}{\Delta t} \int_{t}^{t+\Delta t} \varphi dt \right] dV \,. \tag{9}$$

Para que o teorema da média volumétrica local seja válido é necessário que o volume elementar representativo, ΔV , seja independente do tempo e do espaço em todo domínio do meio poroso. Se o meio poroso for indeformável, então o volume de fluido, ΔV_f , será dependente apenas do espaço e não do tempo. Além disso, se o intervalo de tempo escolhido, Δt , for o mesmo para todo o volume elementar representativo, então, a média volumétrica comuta com a média temporal pois os domínios de integração são completamente independentes. Neste caso, a ordem de aplicação das médias fica irrelevante e

$$\overline{\langle \varphi \rangle^{\nu}} = \langle \overline{\varphi} \rangle^{\nu} \text{ ou } \overline{\langle \varphi \rangle^{i}} = \langle \overline{\varphi} \rangle^{i}.$$
(10)

2.4 Dupla decomposição (flutuação temporal e espacial)

Das definições das Eqs. (1) e (7) chega-se a:

$$\langle \varphi \rangle^{i} = \frac{1}{\Delta V_{f}} \int_{\Delta V_{f}} \varphi dV = \frac{1}{\Delta V_{f}} \int_{\Delta V_{f}} (\overline{\varphi} + \varphi') dV = \langle \overline{\varphi} \rangle^{i} + \langle \varphi' \rangle^{i}, \qquad (11)$$

e das Eqs. (2) e (6), chega-se a

$$\overline{\varphi} = \frac{1}{\Delta t} \int_{t}^{t+\Delta t} \varphi dt = \frac{1}{\Delta t} \int_{t}^{t+\Delta t} (\langle \varphi \rangle^{i} + {}^{i} \varphi) dt = \overline{\langle \varphi \rangle^{i}} + \overline{{}^{i} \varphi} .$$
(12)

Além disso, a grandeza $\langle \varphi \rangle^i$ pode ser decomposta em sua média temporal mais a sua flutuação temporal:

$$\langle \varphi \rangle^{i} = \overline{\langle \varphi \rangle^{i}} + \langle \varphi \rangle^{i'}, \tag{13}$$

utilizando o fato da média temporal comutar com a volumétrica (Eq. 10), das Eqs. (11) e (13) conclui-se,

$$\langle \varphi' \rangle^i = \langle \varphi \rangle^{i'}. \tag{14}$$

A Equação (14) afirma que *a média volumétrica da flutuação temporal é igual a flutuação temporal da média volumétrica*. Similarmente, a grandeza $\overline{\varphi}$ pode ser decomposta em sua média intrínseca mais a sua flutuação espacial,

$$\overline{\varphi} = \langle \overline{\varphi} \rangle^i + {}^i \overline{\varphi} \ . \tag{15}$$

Da mesma forma, comparando-se as Eqs. (12) e (15) à luz da Eq. (10), tem-se:

$${}^{i}\overline{\varphi} = \overline{{}^{i}\varphi}, \qquad (16)$$

ou seja, a flutuação espacial da média temporal é igual a média temporal da flutuação espacial.

Além disso, temos das Eqs. (2) e (7),

$$\langle \boldsymbol{\varphi} \rangle^i + {}^i \boldsymbol{\varphi} = \overline{\boldsymbol{\varphi}} + \boldsymbol{\varphi}' \,. \tag{17}$$

Introduzindo na Eq. (17) as Eqs. (11) e (12), à luz das Eqs (10, 14 e 16), obtemos:

$$\langle \overline{\varphi} \rangle^{i} + \langle \varphi' \rangle^{i} + {}^{i}\varphi = \langle \overline{\varphi} \rangle^{i} + {}^{i}\overline{\varphi} + \varphi' \implies \varphi' - \langle \varphi' \rangle^{i} = {}^{i}\varphi - {}^{i}\overline{\varphi}, \qquad (18)$$

onde o termo $\varphi' - \langle \varphi' \rangle^i$ é a flutuação espacial da flutuação temporal (valor microscópio de φ' menos sua média intrínseca), e o termo ${}^i \varphi - \overline{{}^i \varphi}$ é a flutuação temporal da flutuação espacial (valor instantâneo de ${}^i \varphi$ menos sua média temporal). Estes dois termos são iguais e serão representados por ${}^i \varphi'$.

Através da Eq. (18) e a definição de ${}^{i}\varphi'$ temos:

$${}^{i}\varphi = {}^{i}\overline{\varphi} + {}^{i}\varphi', \tag{19}$$

e
$$\varphi' = \langle \varphi' \rangle^i + {}^i \varphi'.$$
 (20)

Com a Eq. (19) ou (20), conclui-se que $\langle i \varphi' \rangle^i = 0$ e $\overline{i \varphi'} = 0$.

Ou seja, num escoamento turbulento, a propriedade φ (microscópica) apresenta uma flutuação temporal, conseqüentemente a sua média volumétrica intrínseca, $\langle \varphi \rangle^i$, também apresenta uma flutuação temporal (Eq. 11). Assim, analisando a Figura 1, conclui-se que a flutuação espacial, ${}^i\varphi$, também apresenta uma flutuação temporal (Eq. 19) e da mesma forma a flutuação temporal, φ' , também apresenta uma flutuação espacial (Eq. 20).

Com essas idéias, conclui-se que a propriedade φ pode ser decomposta em (Figura 1):

$$\varphi = \langle \overline{\varphi} \rangle^i + \langle \varphi' \rangle^i + {}^i \overline{\varphi} + {}^i \varphi'.$$
⁽²¹⁾

Foi através deste desenvolvimento que Pedras & de Lemos (1999) mostraram que as equações de conservação macroscópicas do escoamento independem da ordem de aplicação das médias (temporal e volumétrica) nas equações microscópicas, quando o meio poroso é indeformável e saturado por um fluido monofásico.

3. EQUAÇÕES DE CONSERVAÇÃO MACROSCÓPICAS

3.1 Equação de continuidade macroscópica

Aplicando-se a média temporal e a volumétrica (ou vice-versa) na equação de continuidade microscópica para um fluido incompressível num meio poroso indeformável chega-se a (Pedras & de Lemos, 1999),

$$\nabla \cdot (\phi \langle \overline{\mathbf{u}} \rangle^i) = 0 \implies \nabla \cdot \overline{\mathbf{u}}_D = 0, \qquad (22)$$

onde $\overline{\mathbf{u}}_D = \phi \langle \overline{\mathbf{u}} \rangle^i$ é a velocidade de Darcy mediada no tempo.

3.2 Equação de momentum macroscópica

Da mesma forma, para a equação de momentum macroscópica tem-se:

$$\rho \left[\frac{\partial}{\partial t} (\phi \langle \overline{\mathbf{u}} \rangle^{i}) + \nabla \cdot (\phi \langle \overline{\mathbf{u}} \overline{\mathbf{u}} \rangle^{i}) \right] = -\nabla (\phi \langle \overline{p} \rangle^{i}) + \mu \nabla^{2} (\phi \langle \overline{\mathbf{u}} \rangle^{i}) + \nabla \cdot (-\rho \phi \langle \overline{\mathbf{u'u'}} \rangle^{i}) + \phi \rho \mathbf{g} + \overline{\mathbf{R}},$$
(23)

onde

$$\overline{\mathbf{R}} = \frac{\mu}{\Delta V} \int_{A_i} \mathbf{n} \cdot (\nabla \overline{\mathbf{u}}) dS - \frac{1}{\Delta V} \int_{A_i} \mathbf{n} \overline{p} dS , \qquad (24)$$

sendo $\overline{\mathbf{R}}$ a força total de arrasto mediada no tempo por unidade de volume (força de superfície ponderada no volume), devida à presença de partículas sólidas, composta pelo arrasto viscoso e pelo arrasto de forma (ou pressão) e $-\rho\phi\langle \overline{\mathbf{u'u'}}\rangle^i$ o tensor de Reynolds macroscópico (efeito macroscópico da turbulência).

Através da Eq. (21), o tensor de Reynolds macroscópico pode ser expandido como:

$$-\rho\phi\langle \overline{\mathbf{u'u'}}\rangle^{i} = -\rho\phi[\overline{\langle \mathbf{u'}\rangle^{i}\langle \mathbf{u'}\rangle^{i}} + \langle \overline{\mathbf{u'}^{i}\mathbf{u'}}\rangle^{i}], \qquad (25)$$

onde o primeiro termo à direita representa a turbulência devido à flutuação temporal da velocidade macroscópica e o segundo a dispersão turbulenta devido à flutuação temporal e espacial da velocidade microscópica. Pedras & de Lemos (1998) mostraram que o tensor de Reynolds macroscópico pode ser expresso por:

$$-\rho\phi\langle \mathbf{\overline{u'u'}}\rangle^{i} = \mu_{i_{\phi}} 2\langle \mathbf{\overline{D}}\rangle^{\mathbf{v}} - \frac{2}{3}\phi\rho\langle k\rangle^{i}\mathbf{I}, \qquad (26)$$

onde:

$$\mu_{t_{\delta}} \langle \overline{\mathbf{D}} \rangle^{\nu} = \langle \mu_{t} \overline{\mathbf{D}} \rangle^{\nu}, \qquad (27)$$

$$\mathbf{e} \qquad \langle \overline{\mathbf{D}} \rangle^{\nu} = \frac{1}{2} \Big[\nabla \overline{\mathbf{u}}_{D} + (\nabla \overline{\mathbf{u}}_{D})^{T} \Big]. \tag{28}$$

Nas Eqs. (27) e (28), $\mu_{t_{\phi}}$ é a viscosidade turbulenta em meios porosos, μ_t é a viscosidade turbulenta microscópica e $\overline{\mathbf{D}}$ é o tensor de deformações médio no tempo. Sendo $\mu_{t_{\phi}}$ modelado por:

$$\mu_{t_{\phi}} = \rho C_{\mu} f_{\mu} \frac{\langle k \rangle^{i^2}}{\langle \varepsilon \rangle^i}.$$
(29)

4. EQUAÇÃO MACROSCÓPICA PARA $k - \varepsilon$

A equação resultante da diferença entre a equação de momentum microscópica instantânea e a equação de momentum microscópica média no tempo é (Warsi, 1993):

$$\rho\left\{\frac{\partial \mathbf{u}'}{\partial t} + \nabla \cdot \left[\overline{\mathbf{u}}\,\mathbf{u}' + \mathbf{u}'\overline{\mathbf{u}} + \mathbf{u}'\mathbf{u}' - \overline{\mathbf{u}'\mathbf{u}'}\right]\right\} = -\nabla p' + \mu \nabla^2 \mathbf{u}'\,. \tag{30}$$

A média volumétrica da Eq. (30), através do teorema da média volumétrica local, fornece para cada termo,

$$\left\langle \frac{\partial \mathbf{u}'}{\partial t} \right\rangle^{\nu} = \frac{\partial}{\partial t} (\phi \langle \mathbf{u}' \rangle^{i}), \qquad (31)$$

$$\langle \nabla \cdot (\overline{\mathbf{u}} \mathbf{u}') \rangle^{\nu} = \nabla \cdot (\phi \langle \overline{\mathbf{u}} \mathbf{u}' \rangle^{i}) + \frac{1}{\Delta V} \int_{A_{i}} \mathbf{n} \cdot (\overline{\mathbf{u}} \mathbf{u}') dS, \qquad (32)$$

$$\langle \nabla \cdot (\mathbf{u}' \overline{\mathbf{u}}) \rangle^{\nu} = \nabla \cdot (\phi \langle \mathbf{u}' \overline{\mathbf{u}} \rangle^{i}) + \frac{1}{\Delta V} \int_{A_{i}} \mathbf{n} \cdot (\mathbf{u}' \overline{\mathbf{u}}) dS , \qquad (33)$$

$$\langle \nabla \cdot (\mathbf{u'u'}) \rangle^{\nu} = \nabla \cdot (\phi \langle \mathbf{u'u'} \rangle^{i}) + \frac{1}{\Delta V} \int_{A_{i}} \mathbf{n} \cdot (\mathbf{u'u'}) dS , \qquad (34)$$

$$\langle \nabla \cdot (\overline{\mathbf{u'u'}}) \rangle^{\nu} = \nabla \cdot (\phi \langle \overline{\mathbf{u'u'}} \rangle^{i}) + \frac{1}{\Delta V} \int_{A_{i}} \mathbf{n} \cdot (\overline{\mathbf{u'u'}}) dS , \qquad (35)$$

$$\langle \nabla p' \rangle^{\nu} = \nabla (\phi \langle p' \rangle^{i}) + \frac{1}{\Delta V} \int_{A_{i}} \mathbf{n} p' dS , \qquad (36)$$

$$\langle \nabla \cdot \nabla \mathbf{u}' \rangle^{\nu} = \nabla^2 (\phi \langle \mathbf{u}' \rangle^i) + \nabla \cdot \left[\frac{1}{\Delta V} \int_{A_i} \mathbf{n} \mathbf{u}' dS \right] + \frac{1}{\Delta V} \int_{A_i} \mathbf{n} \cdot (\nabla \mathbf{u}') dS .$$
(37)

Sabendo-se que na interface, A_i , todas as velocidades são nulas devido à condição de não deslizamento, expandindo-se os divergentes das Eqs. (32, 33, 34 e 35), através das Eqs. (12) e (20), teremos a equação de momentum macroscópica devido à turbulência no escoamento:

$$\rho \frac{\partial}{\partial t} (\phi \langle \mathbf{u}' \rangle^{i}) + \rho \nabla \cdot \{\phi [\langle \overline{\mathbf{u}} \rangle^{i} \langle \mathbf{u}' \rangle^{i} + \langle \mathbf{u}' \rangle^{i} \langle \overline{\mathbf{u}} \rangle^{i} + \langle \mathbf{u}' \rangle^{i} \langle \mathbf{u}' \rangle^{i} + \langle \mathbf{u}' \rangle^{i} \langle \mathbf{u}' \rangle^{i} - \overline{\langle \mathbf{u}' \rangle^{i}} - \langle \overline{\mathbf{u}'} \langle \mathbf{u}' \rangle^{i}]\} =$$

$$-\nabla (\phi \langle p' \rangle^{i}) + \mu \nabla^{2} (\phi \langle \mathbf{u}' \rangle^{i}) + \mathbf{R} - \overline{\mathbf{R}},$$
(38)

onde:

$$\mathbf{R} - \overline{\mathbf{R}} = \frac{\mu}{\Delta V} \int_{A_i} \mathbf{n} \cdot (\nabla \mathbf{u}') dS - \frac{1}{\Delta V} \int_{A_i} \mathbf{n} \, p' dS \,. \tag{39}$$

A Equação (38) também pode ser obtida aplicando-se a média temporal na equação resultante da diferença entre a equação de momentum macroscópica instantânea e a equação de momentum macroscópica média no tempo.

Neste ponto, existem dois procedimentos para obter uma equação de transporte macroscópica para a energia cinética turbulenta. Um deles é multiplicar escalarmente a Eq. (38) pela flutuação temporal da velocidade macroscópica, $\langle \mathbf{u}' \rangle^i$, e aplicar, em seguida, a média temporal. Tal procedimento produz uma equação de transporte macroscópica para $k_m = \overline{\langle \mathbf{u}' \rangle^i \cdot \langle \mathbf{u}' \rangle^i}/2$. Lee & Howell (1987), Wang & Takle (1995) e Antohe & Lage (1997) utilizaram o procedimento acima para a obtenção da equação de transporte para k_m , utilizando para $\mathbf{R} - \overline{\mathbf{R}}$ (Eq. 38) o modelo Darcy-Forchheimer com as velocidades macroscópicas flutuantes no tempo e desprezando as dispersões (4º, 5º, 6º e 8º termos no divergente da Eq. 38). Este procedimento, além de limitar a energia cinética turbulenta a k_m , merece os seguintes comentários: a) o modelo Darcy-Forchheimer é baseado em velocidades temporais médias (modelo empírico); b) a força de arrasto $\mathbf{R} - \overline{\mathbf{R}}$ atua através da interface fluido-sólido e, desta forma, sobre partículas de fluido estagnadas não podendo produzir energia mecânica; ou seja, multiplicar escalarmente $\mathbf{R} - \overline{\mathbf{R}}$ ou o modelo Darcy-Forchheimer pela velocidade $\langle \mathbf{u}' \rangle^i$ "não tem sentido físico" (identicamente nulo). O outro procedimento é multiplicar escalarmente a Eq. (30) pela flutuação temporal da velocidade microscópica, u', aplicar a média temporal e, em seguida, a média volumétrica (ou a média volumétrica e, em seguida, a temporal), tal procedimento produz uma equação de transporte macroscópica para $\langle k \rangle^i = \langle \overline{\mathbf{u'} \cdot \mathbf{u'}} \rangle^i / 2$.

É interessante notarmos que o primeiro procedimento não produz a média volumétrica da energia cinética turbulenta, $\langle k \rangle^i$, pois só leva em conta a flutuação temporal da velocidade macroscópica, perdendo a contribuição devida às flutuações espaciais; enquanto o segundo procedimento incorpora todos os efeitos da turbulência, a energia cinética turbulenta devida às flutuações temporais macroscópicas e a energia cinética turbulenta devida às flutuações temporais macroscópicas (Eq. 25). Usando a Eq. (20) é fácil mostrar que:

$$\langle k \rangle^{i} = \langle \overline{\mathbf{u}' \cdot \mathbf{u}'} \rangle^{i} / 2 = \overline{\langle \mathbf{u}' \rangle^{i} \cdot \langle \mathbf{u}' \rangle^{i}} / 2 + \langle \overline{\mathbf{u}' \cdot \mathbf{u}'} \rangle^{i} / 2$$

$$= k_{m} + \langle \overline{\mathbf{u}' \cdot \mathbf{u}'} \rangle^{i} / 2.$$
(40)

Pedras & de Lemos (1998) utilizaram este último procedimento obtendo a seguinte equação macroscópica para a energia cinética turbulenta:

$$\rho \left[\frac{\partial}{\partial t} (\phi \langle k \rangle^{i}) + \nabla \cdot (\overline{\mathbf{u}}_{D} \langle k \rangle^{i}) \right] = \nabla \cdot \left[(\mu + \frac{\mu_{t_{\phi}}}{\sigma_{k}}) \nabla (\phi \langle k \rangle^{i}) \right] - \rho \langle \overline{\mathbf{u}' \mathbf{u}'} \rangle^{i} : \nabla \overline{\mathbf{u}}_{D} + C_{k} \rho \frac{\phi \langle k \rangle^{i} |\overline{\mathbf{u}}_{D}|}{\sqrt{K}} - \rho \phi \langle \varepsilon \rangle^{i},$$
(41)

onde o termo com C_k foi introduzido para incorporar a produção de $\langle k \rangle^i$ devida às flutuações espaciais e *K* é a permeabilidade do meio.

Para a equação de transporte macroscópica da dissipação podemos partir tanto da Eq. (38) (Antohe & Lage, 1997), mantendo-se os mesmos comentários já feitos para a equação de k, ou partirmos da Eq. (30) obtendo a equação microscópica de ε e em seguida aplicar a média volumétrica (Pedras & de Lemos, 1998), resultando em:

$$\rho \left[\frac{\partial}{\partial t} (\phi \langle \boldsymbol{\varepsilon} \rangle^{i}) + \nabla \cdot (\overline{\mathbf{u}}_{D} \langle \boldsymbol{\varepsilon} \rangle^{i}) \right] = \nabla \cdot \left[(\mu + \frac{\mu_{t_{\phi}}}{\sigma_{\varepsilon}}) \nabla (\phi \langle \boldsymbol{\varepsilon} \rangle^{i}) \right] + C_{1} f_{1} \frac{\langle \boldsymbol{\varepsilon} \rangle^{i}}{\langle \boldsymbol{k} \rangle^{i}} [-\rho \langle \overline{\mathbf{u}' \mathbf{u}'} \rangle^{i} : \nabla \overline{\mathbf{u}}_{D} + C_{k} \rho \frac{\phi \langle \boldsymbol{k} \rangle^{i} |\overline{\mathbf{u}}_{D}|}{\sqrt{K}}] - C_{2} f_{2} \rho \phi \frac{\langle \boldsymbol{\varepsilon} \rangle^{i^{2}}}{\langle \boldsymbol{k} \rangle^{i}}.$$

$$(42)$$

Assim, conclui-se que, na obtenção da equação macroscópica para $k \in \varepsilon$, não se pode simplesmente mudar a ordem de aplicação da média temporal e volumétrica, pois, entre uma média e outra, a multiplicação escalar ou a diferenciação é que define o nível da energia cinética turbulenta que está sendo "capturada".

5. CONCLUSÕES

A média volumétrica e temporal comutam entre si desde que os domínios das integrais sejam independentes. Assim, na obtenção das equações de conservação macroscópicas (continuidade, momentum e energia), a ordem de aplicação das médias é irrelevante quando o meio poroso é indeformável e saturado por um fluido monofásico.

Porém, se entre uma média e outra houver uma multiplicação ou diferenciação que tenha uma dependência de domínio, as médias não mais comutam entre si e este é exatamente o caso das equações macroscópicas para $k \in \varepsilon$.

Neste caso, a única forma de obtermos a equação macroscópica "completa" (que incorpore todos os efeitos microscópicos) é aplicando a multiplicação ou diferenciação no nível microscópico e só aplicar a média volumétrica depois que todos essas operações estiverem sido efetuadas.

Agradecimentos

Os autores são especialmente gratos ao CNPq pelo suporte financeiro durante a preparação deste trabalho.

REFERÊNCIAS

Antohe, B. V. & Lage, J. L., 1997, A general two-equation macroscopic turbulence model for incompressible flow in porous media, Int. J. Heat Mass Transfer, vol. 40, pp. 3013-3024.

Bear, J., 1972, Dynamics of Fluids in Porous Media, American Elsevier Pub. Co., New York.

- Gray, W. G. & Lee, P. C. Y., 1977, On the theorems for local volume averaging of multiphase system, Int. J. Multiphase Flow, vol. 3, pp. 333-340.
- Kuwahara, F., Kameyama, Y., Yamashita, S., and Nakayama, A., 1998, Numerical modeling of turbulent flow in porous media using a spatially periodic array, J. Porous Media, vol. 1, pp. 47-55.
- Lee, K. & Howell, J. R., 1987, Forced convective and radiative transfer within a highly porous layer exposed to a turbulent external flow field, Proceedings of the 1987 ASME-JSME Thermal Engineering Joint Conf., vol. 2, pp. 377-386.
- Masuoka, T. & Takatsu, Y., 1996, Turbulence model for flow through porous media, Int. J. Heat Mass Transfer, vol. 39, pp. 2803-2809.
- Pedras, M. H. J. & de Lemos, M. J. S., 1998, Resultados da modelagem da turbulência macroscópica em meios porosos, Proc. of ENCIT98 7th Braz. Therm. Scienc. Meetg., November 3-6, Rio de Janeiro.

- Pedras, M. H. J. & de Lemos, M. J. S., 1999, On volume and time averaging of transport equations for turbulent flow in porous media, ASME-FED-vol. 248, Paper FEDSM99-7273, ISBN 0-7918-1961-2.
- Slattery, J. C., 1967, Flow of viscoelastic fluids through porous media, A.I.Ch.E. J., vol. 13, pp. 1066-1071.
- Takatsu, Y. & Masuoka, T., 1998, Turbulent phenomena in flow through porous media, J. Porous Media, vol. 3, pp. 243-251.
- Wang, H. & Takle, E. S., 1995, Boundary-layer flow and turbulence near porous obstacles, Boundary Layer Meteorology, vol. 74, pp. 73-88.
- Warsi, Z. U. A., 1993, Fluid Dynamics Theoretical and Computational Approaches, CRC Press, Boca Raton.
- Whitaker, S., 1969, Advances in theory of fluid motion in porous media, Indust. Engng. Chem., vol. 61, pp. 14-28.

Title: MACROSCOPIC TURBULENCE MODELING FOR FLOW THROUGH SATURATED UNDEFORMABLE POROUS MEDIA

Abstract: There are, in the literature, two distinct approaches for developing turbulent models for flow in a porous medium. The first one starts with the macroscopic equations using the extended Darcy-Forchheimer model. The second method makes use, first, of the microscopic balance equations. These two methodologies lead to distinct set of equations for the $k - \varepsilon$ model. Differences between these two approaches are here discussed upon.

Key words: Porous Media, Turbulence Modeling, Volume-Average, Time-Average, Reynolds Stress