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Abstract. The influence of different helicopter parameters on the self-exciting, catastrophic
instability known as ground resonance is studied herein. The analytical model considers a
multibladed rotor helicopter-rotors with three or more blades-and neglectes aerodynamics
effects. It takes into account two equations of motion sets: one considers the lead-lag degrees of
freedom of each rigid blade and the longitudinal and lateral degrees of freedom of the rotor
support-hub; the other set takes into account the lead-lag and flapping degrees of freedom of
each rigid blade and the pitch and roll degrees of freedom of the helicopter as a whole. Results
include diagrams for modal frequency and modal damping as function of rotor nondimensional
rotational speed for different rotor configurations. Modal frequency and damping diagrams are
presented for both rotating and nonrotating frames of reference analyses. Eigenvector phasors
are plotted for different regimes of rotor rotational speed. Their behavior inside and outside the
instability region is analyzed. Interpretation of the phasors behavior points towards a link to the
very existence and nature of the phenomenon itself.
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1. INTRODUCTION

Ground resonance is an autoexcited instability that occurs when the frequency of the blade
lead-lag mode coalesces with the frequency of the body mode. As a consequence, the combined
center of mass turns violently outward producing a rotating force at the rotor hub as it can be seen



in Fig. 1. Under the circumstances for the “resonance” to happen, the rotational energy of the
blades is converted into oscillatory motion of the body, that, itself, feeds back energy into the
rotor. The instability generally happens when the aircraft is not airborne yet, being close to the
ground and having its landing gear extended. A wind gust, a sudden motion of the control or a
hard landing can motivate the displacement of the combined blades center of  mass. Since the
phenomenon is potentially very destructive, avoiding it is an important consideration in helicopter
design.
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Figure 1 - Illustration of the helicopter ground resonance, from Prouty(1985).

The first paper on this subject was published by Coleman and Feingold(1958). It’s still the
most complete work published on the subject. Peters and Hohenemser(1971) presented a method
for determining the stability of linear ordinary differential equations, turning the Floquet Theory
ready for applying in rotorcraft problems as this one. The influence of the aerodynamics forces
when hingeless rotors are present is presented by Johnson(1982); he correlates results from his
dynamic inflow model. Bousman(1981)’s experimental data showed the real need to have
aerodynamics effects included in the real problem. Arcos and de Andrade(1997a) studied the
stability of both hingeless and articulated two-bladed helicopter rotors using Floquet analysis.
Detailed study involving the behavior of associated eigenvectors in and out the instability region
for that configuration were also presented by Arcos and de Andrade(1997b).

2. ANALYTICAL MODEL

The equations of motion are derived from a Lagrangean viewpoint. The systems involved as
well as the involved degrees of freedom are depicted in Fig. 2. The most important assumptions
taken are: (1) the rotor model involves three or more rigid blades attached to the hub, including
root offsets; (2) aerodynamics effects are neglected; (3) springs are set at the blade roots to model
blade stiffnesses in both flap and lead-lag; (4) external dampers are placed upon the blades for both
flap and lead-lag motions; and (5) blades rotate with rotational speed Ω.

Two set of equations are employed: the first considers two rotational degrees of freedom for
the body (roll-φ and pitch-θ) and two degrees of freedom for each blade (lead-lag-ζ and flap-β);
the second set is the classical model, considering two translational body degrees of freedom and
two degrees of freedom, flap and lead-lag, for each blade.
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Figure 2 - Drawings that represent rotor / body and rotor / blade model.

3. SOLUTION APPROACH

The solution approach involves the solution of a set of ordinary linear differential equations
obtained with the aid of symbolic computation as described in Pegado(1998). Linearization takes
into account that both flap and lead-lag angles are small and neglects higher order terms. In
general, this kind of the second-order linear differential equations shows periodic coefficients,
which involves a more detailed numerical analysis due to is inherent frequency aliasing(Peters &
Hohenemser(1971)). Depending on the nature of the set of rotor blades (called henceforth
“rotor”)-rotor hub (called henceforth “hub”) periodic coefficients can be avoided. In this work, an
isotropic rotor it that whose blades have the same properties as mass, damping, and stiffness. An
isotropic hub here is the one which has the same properties in both x and y directions. When both
rotor and hub are isotropic, periodic coefficients can be eliminated through the use of multiblade
coordinate transformation when the blade equations are set into the nonrotating reference frame.
Once the equations are established in a state-variable form, their eigenvalues can be calculated.
Plots of their imaginary parts (called modal frequencies) in terms of the rotor rotational speed,
called Coleman diagrams, can be obtained as well plots of their real parts, which are called modal
damping. Instability ranges can be observed directly from both plots.

When an isotropic hub is in the presence of an anisotropic rotor, transforming the equations of
motion of the former into the rotating reference frame yields a standard, nonperiodic coefficient
set of equations to be solved. Equations of motion have periodic coefficients when an isotropic
rotor is in the presence of an anisotropic hub. In this case the equations are transformed into a
nonrotating reference frame through multiblade coordinate transformation, finite-state equations
are set and the stability information is obtained through Floquet analysis(Peters &
Hohenemser(1971)). The so-called Floquet transition matrix is calculated integrating numerically
the state transition matrix over one period, 2π. The Floquet transition matrix eigenvalues are
plotted in form of damping and frequency diagrams and the stability range can be obtained.

4. RESULTS AND DISCUSSION

Before presenting results, it is interesting to comment on the physics involved within the
phenomenon and its analysis.

The rotor blades seem to be lead-lagging independently for an observer in the rotating frame,
i.e., for somebody sitting on the rotor hub and watching the blade motion. In this situation, all the



blades have the same oscillation frequency, but their phases are different. On the other hand, the
blade motions are coupled to each other to form distinct patterns as seen by an observer in the
nonrotating frame. These patterns are called rotor mode shapes. If a strobe light is set to the
frequency of a particular mode, then the components of the mode shape can be seen by an
observer in the nonrotating frame. For example, for a four-bladed rotor, the four components in
the nonrotating frame are ζ�� ζ�� ζ�F� and ζ�V� called, respectively, collective, differential, cosine
and sine modes. The last two are called cyclic modes. Under a physical standpoint, ζ�F and ζ�V
are, respectively, a lateral and a longitudinal shifts of the rotor center of mass.

For isotropic rotors in hover, the collective and differential lag motions are completely
uncoupled from cyclic rotor  and the body modes. It isn’t difficult to visualize that any collective
lag motion can only introduce a torque to the main shaft. The differential mode is present in rotor
having an even number of blades. Concerning the lead-lag mode, it is linked to the scissor-like
movement of the blade set.

The coupled sine and cosine (cyclic) lead-lag modes can be referred to as either high
frequency or low frequency mode. The high frequency mode represents a forward turning of the
rotor center of mass; that means that the global rotor center of mass is swirling ahead and in the
same direction as the rotor itself, as observed by an observer in the nonrotating frame. In the low
frequency mode, the rotor center of mass can be turning either in the same direction of the rotor
itself (progressive) or in the opposite direction (regressive). In the first case, its associated
frequency, νζ� is lower than 1/rev; in the second situation, it will be greater than 1/rev. The
rotating lead-lag frequency is defined as νζ

2
 .��Ω� � .�� where K1, and K2 are the Southwell

coefficients, and they represent the structural stiffness and the centrifugal force acting upon the
blade, respectively. The resonance occurs when the body modes coalesce with the low frequency
progressive blade mode.

In this work, simulation of anisotropic rotors is done by considering that one external blade
damper is innoperative, that means, one blade damping coefficient is zero.

Figures 3, 4 and 5 show the influence of the type of rotor on the stability range. The behavior
of articulated, stiff inplane and soft inplane hingeless rotors are investigated. Results herein use
dimensionless rotor rotational speed of 155 RPM as a reference, same used by Coleman and
Feingold(1958). Articulated rotors have K1= 0 and νζ � 1/rev as standard values. Figure 3 shows
results for a typical articulated four-bladed helicopter rotor without damping and with anisotropic
hub. Two instability regions can be observed: one between 0.85 and 1.2 and another ranging from
1.3 to 2.0. The modal frequency diagram shows the coalescence between the body modes and the
low frequency lead-lag mode.

Like articulated rotors, soft inplane hingeless rotors have νζ � ��UHY� but for them K1 is
nonzero. Figure 4 shows its behavior on a configuration including three equal blades with isotropic
hub. In this figure the corresponding eigenvalues are plotted, showing one instability range
between 1.2 and 2.4, where there is a coalescence of the low frequency blade lead-lag mode with
the body modes, as observed on both modal frequency and damping diagrams.

The stiff inplane hingeless rotor center of mass cannot perform the progressive low frequency
rotation because its lead-lag rotating frequency is less then 1/rev. For these rotor configurations,
the ground resonance does not take place, as observed in Fig. 5. Here the body modes do not
coalesce with the low frequency lead-lag mode, being free from the instability.
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Figure 4 - Soft inplane hingeless three-bladed isotropic rotor, without damping and with isotropic
hub in the nonrotating frame.
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Figure 5 - Stiff inplane hingeless three-bladed isotropic rotor, without damping and with isotropic
hub in the nonrotating frame.

Figure 3 – Articulated isotropic four-bladed rotor, without damping and with anisotropic hub in the
nonrotating frame.



Following, the influence of the external damping is analyzed. As mentioned before, in Fig. 3,
for a four-bladed articulated rotor without external dampers, two instability regions are present.
Fig. 6 shows results for a simulation involving the same basic configuration but now including
installed external lead-lag dampers on each blade. Main point of comparison between the two
figures is that the inclusion of external dampers prevent the ocurrence of instability.
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Figure 6 - Articulated four-bladed isotropic rotor, with damping and with isotropic hub in the
nonrotating frame.

Results for a three-bladed isotropic hingeless rotor with damping are represented in Fig. 7. As
observed in Fig. 6 here also one observe that an adequate choice for the level of damping in
preliminary design can free the helicopter from ground resonance. The external damping role is to
keep blade lead-lag and body frequency modes apart, decreasing or eventually making the
coalescence to not happen at all. As observed, the modal damping migrates to the fourth quadrant
of the corresponding plots. The value of damping required for ground resonance stability can be
calculated, for instance, using Deutsch criterion as described in Johnson(1980).
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Figure 7 - Soft inplane three-bladed isotropic rotor, with damping and with isotropic hub in the
nonrotating frame.
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For an articulated four-bladed rotor including one innoperative damper, there is one region
of instability between 0.9 and 1.4 as shown on both Fig. 8 and 9. Figure 9 is obtained using
Floquet analysis. Floquet analysis is also employed for solving the problem when both rotor and
hub are anisotropic, as observed on Fig. 10.

Figure 8 - Articulated four-bladed anisotropic rotor, with one innoperative damper in the
presence of isotropic hub in rotating frame.

Figure 9 - Articulated four-bladed anisotropic rotor, with one innoperative damper in the
presence of isotropic hub in rotating frame, Floquet’s analysis.
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Figure 10 - Articulated four-bladed anisotropic rotor, with one innoperative damper in the
presence of anisotropic hub in nonrotating frame.

Eigenvector analysis is conducted for different ranges of rotational speed and results for the
nonrotating frames are shown in Figures 11-13. Figure 11 shows results for a three-bladed soft
inplane hingeless rotor along with x and y body modes. Figure 12 shows similar results but
including pitch and roll body modes. Figure 13 shows phasor diagrams for an articulated four-
bladed isotropic rotor in the presence of an anisotropic hub.
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Figure 11 - Phasor diagrams for a three-bladed soft inplane hingeless rotor in the presence of an
isotropic hub in rotating frame, x and y body modes.
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Figure 12 - Phasor diagrams for a three-bladed soft inplane hingeless rotor in rotating frame, pitch
and roll body modes.
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Figure 13 - Phasor diagrams for a four-bladed articulated rotor in the presence of an anisotropic
hub in rotating frame.

One observes that for all stability ranges phasors for degrees of freedom from both blade and
hub are 90 degrees out-of-phase with respect to their time rate counterparts. To the instability



regions, there are always inphase or out-of-phase components in this context, making clear that
instability is present, with an increasing exchange of energy from blade to body motion and vice-
versa.

5. CONCLUSIONS

This research examines the influence on the helicopter ground resonance of different types of
rotor, different placement of damping, and rotor and hub anisotropy. The resonance can occur in
both articulated and soft inplane hingeless rotors. In the latter, the progressive low frequency lead-
lag mode is involved in the coalescence with body modes. Stiff inplance hingeless rotors are free
from this instability. It is shown that an adequate level of external damping placement can prevent
resonance. Floquet analysis shows itself as a very handy tool for solving configurations involving
both rotor and hub anisotropy. Eigenvector analysis shows phasor diagrams with 90 degrees out-
of-phase between degrees of freedom and their time rate counterparts for stability ranges of rotor
rotational speed. Corresponding inphase and out-of-phase components are observed for instability
regions. This eigenvector behavior can enlighten the physics of the problem since the inphase and
out-of-phase phasors for degrees of freedom and their time rate counterparts present in the
instability regions can be directly related to the increase of oscillations and feedbacking instability
mechanism.
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