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Abstract. This paper compares finite element predictions of strain and strain range with
estimates obtained from simple notch stress-strain conversion (NSSC) rules. A wide range of
two dimensional and axisymmetric components were considered, including data from other
published analyses, in order to verify the suitability of the NSSC rules. The elastic-plastic
comparisons are made for various loading conditions (i.e., monotonic and cyclic) and
geometries using the elastic-perfectly-plastic (EPP) material model. The NSSC rules were
found to overestimate the finite element predictions and they are generally dependent on both
the geometry and load level. Similar findings have been noted in some of the published
papers.
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1.     INTRODUCTION

       Most engineering components contain geometric discontinuities, with abrupt changes in
the cross section. These including projections, holes, grooves, threads, flanges, etc., and these
induce local high stresses. These stress raisers are generally termed notches and are likely
places for plastic deformation under moderate to high loading. The latter condition may result
in fatigue crack initiation (FCI) and subsequent propagation at the roots of these notches.
Therefore, the designer must consider these effects in particular for components under variable
or cyclic loading.
       Elastic stress concentration factors (SCFs), defined as the maximum localised stress at the
notch to the nominal stress away from the discontinuity, are useful data particularly for
components made from brittle materials. However, for components made from ductile
materials, which may experience significant yielding, the local strain approach is more
appropriate to predict the design life of notched components. This is discussed in detail by
Dowling et al.(1977) particularly for low cycle fatigue (LCF) conditions. This approach
requires an estimate of the local strain range at the notch. FCI life predictions for notched
components are based on the local strain approach and fatigue data obtained from simple



uniaxial unnotched specimen tests, where it is assumed that smooth and notched specimens
with the same local strain range experience the same number of cycles to failure. The local
strain range can be obtained by the following three methods:

(1) prototype component testing,
(2) elastic-plastic finite element analysis or other numerical or analytical prediction

methods,
(3) notch stress-strain conversion (NSSC) rules.

       Methods (2) and (3) are analytical approaches for predicting the non-linear and history-
dependent stress-strain behaviour of the notch root in terms of the load history and the cyclic
deformation properties of the metal. Method (1) can be very expensive and time consuming.
       Although finite element analysis is a very powerful technique, elastic-plastic analysis is
much more complex than elastic analysis, especially when the components have complicated
geometries and/or loading conditions. The NSSC rules, on the other hand, provide a relatively
simple method of estimating local strains which can then be used to obtain an FCI life
prediction for the notched component using either smooth specimen fatigue life data or other
standard numerical relationships (e.g. Manson-Coffin (1954)). The most well-known NSSC
rules are Neuber, Linear, Hardrath-Ohman and Intermediate (see Reference by Fuchs and
Stephen (1980)). Extensive studies concerning the experimental and analytical verification of
these rules for a wide range of geometries have been performed by a number of researchers
and a review of the relevant work is given by Gowhari-Anaraki and Hardy (1991).
       Loaded projections on two dimensional (2D), axisymmetric and three dimensional (3D)
components (i.e., refer to components where the load is applied or reacted close to the
goemetric discontinuity) are often used to transmit a variety of loading between two or more
parts. Typical applications include bolted joints, turbine blade roots, lifting lugs, connecting
collars, shouldered plates and anchorage points for machinery parts. Stress levels induced in
the vicinity of the projection can be very high and low cycle fatigue, under variable loading, is a
potential mechanism for ultimate failure. Even when loads or reactions are applied 'remotely'
from the projection, the presence of that projection will have a decisive effect on the stress
field and low cycle fatigue failure is, again, possible.
       Both 2D (e.g., in the form of flat ‘T’ shaped plates) and axisymmetric components (e.g.,
hollow tube with internal projections) have been the subject of detailed elastic and elastic-
plastic analyses by Hardy and Gowhari-Anaraki (1993) and Hardy and Pipelzadeh (1996)
respectively in order to assess the suitability of the NSSC rules. In this paper, 2D and
axisymmetric components subjected to shear and axial loading respectively are considered.
Emphasis is given to the Neuber and Intermediate rules associated to the 2D and 3D
components respectively using EPP material model. In addition, some previously published
experimental and numerical results for other 2D and axisymmetric problems are compared with
NSSC rule estimates and the findings discussed in association with the findings from the
current work.

2.     BACKGROUND

2.1    NSSC rules

       As previously mentioned in Section 1, components under intermediate and, to a large
extent, low cycle fatigue will experience significant yielding. In these regions, the plastic stress
concentration factor, Kσ, and the elastic-plastic strain concentration factor, Kε, are no longer



equal to the elastic stress concentration factor, Kt. Beyond yielding, Kε increases with the load
while Kσ decreases.
       Several relationships between these factors have been proposed, referred here as the
NSSC rule estimates. For 2D components, the Neuber rule is normally associated with plane
stress problems (e.g., thin plates such as the flat ‘T’ shaped component) while the Linear rule is
associated to the plane strain problems (e.g., thick plates). However, for 3D or axisymmetric
components, the Intermediate rule has been considered since it lies between these two extreme
conditions.

       Neuber rule
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where σ̂ , ε̂  are local peak stress and strain at the notch respectively and σa , εa  are nominal
stress and strain measured remotely from the notch, ∆ refers to the amplitude or range (i.e., the
peak-to-peak change during one load reversal or half cycle).
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       When index ‘I’ is set equal to 1, it corresponds to the Neuber rule which generally applies
to plane stress problems whereas when index ‘I’= 0, it gives the other extreme condition,
which is the Linear rule (i.e., Kt = Kε) for plane strain or thick plate problems. In this
investigation the index ‘I’ is set equal to 0.5 for the axisymmetric component as established by
Gowhari-Anaraki and Hardy (1991).
       The above equations can be modified for multi-axial states of stress using various methods
(see Reference by Miller and Brown (1985)). For the 2D component being considered here,
the dominant stress component is the meridional stress (i.e., parallel to the free surface).
However, the axisymmetric component is subjected to multiaxial-states of stress with the
meridional stress component, again, being the dominant component and to less extent the hoop
and radial stresses (for details refer to Fig. 2 of Hardy and Gowhari-Anaraki (1989)).
Therefore, for 2D component, the meridional stress and strain are considered whereas for the
axisymmetric component the equivalent stress (i.e., based on von Mises) and equivalent total
strain are used. Therefore, Eq. (4) can be expressed in terms of stress and strain components as
follows:
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where, Kteq referred to as the maximum equivalent stress index.

3.     COMPONENT GEOMETRIES, LOADING & BOUNDARY CONDITIONS AND
MATERIAL MODEL

       The basic geometric parameters of the 2D and axisymmetric components are shown in
Fig. 1. Load applications and reactions are clearly shown in the figure. Loads are expressed
using a normalised load parameters, λ and γ for 2D and axisymmetric components respectively:

λ = nominal shear stress in the shank/yield shear stress
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where    τy = σy/2

and τa = Q/area = Q/ds   .....(9)

where Q is the transverse shear load, d and s are the shank depth and thickness respectively.

Figure 1-  Geometries for (a) 2 D and (b) axisymmetric components.

Similarly, γ = nominal axial stress in the tube/yield stress
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where   σa = 
)( * tDt

W

−π
 = Eεa .....(11)

and W is the applied axial load, D* and t are the tube outside diameter and thickness
respectively and E is the elastic modulus.
       The elastic-plastic stress-strain behaviour of the components has been modelled
throughout using a simple bilinear time-independent elastic-perfectly-plastic (EPP) material
model.



4.     RESULTS

4.1    Monotonic loading

       All the results are taken at the worst Gauss points nearest to the free surface in the fillet
region. Maximum peak fillet stress and strain indices (i.e., Kt , Kσ and Kε) are obtained by
dividing the stress and strain predictions by the respective nominal values at the uniform
section (i.e., Kt = � /σ σa ).

       Figure 2(a) and (b) show the variation of Kσ and Kε for the 2D and axisymmetric
components respectively with the nominal loads λ and γ. The main observations are:

(i) the normalised stress curves (i.e., Kσ vs. λ and γ) for both components are approximately
the same and are independent of geometry (i.e., Kt). Below these curves, the behaviour of the
components is purely elastic. The onset of yielding, is represented by the curve:

i.e., Kσ = Kt. …..(12)

and at these points, the loading parameters, λ and γ, are approximately equal to the reciprocal
of Kt.

i.e., λ = γ =  1/Kt               (at yield)                                    …..(13)

Figure 2-  Variation of Kε ,  Kσ with λ and γ for (a) 2D and (b) axisymmetric components
under monotonic loading.

(ii) beyond the elastic limit, where plastic flow occurs, there is an increase in � /ε εt
a  (i.e., Kε)

with increasing of load parameter coupled with a reduction in Kσ. Obviously, for geometries
with high Kt value, the onset of yielding will occur at lower load levels.



4.2    Repeated loading

       The results are in the form of normalised stress and strain ranges. These are obtained by
dividing the predicted stress and strain range values by the corresponding nominal values (i.e.,
∆σa and ∆εa). Thus, normalised meridional and equivalent stress range are equal to

am /ˆ σ∆σ∆ and aeq /ˆ σ∆σ∆  respectively. Similarly, normalised meridional and equivalent total

strain range are equal to a
t
m /ˆ ε∆ε∆  and a

t
eq /ˆ ε∆ε∆  respectively.

       Figure 3(a) and (b) show the variation of Kε and  Kσ with nominal loads λ and γ for the
2D and axisymmetric components respectively. The general trends are similar to those
described in Section 4.1. Under repeated loading, the normalised stress and strain ranges
initially remain equal to Kt (i.e., elastic) if no compressive yielding occurs upon unloading.

Figure 3-  Variation of Kε , Kσ with λ and γ for (a) 2D and (b) axisymmetric components under
repeated loading.

However, above a certain limiting nominal stress, compressive yielding will occur during
unloading and further increases in nominal stress result in a reduction in Kσ and an increase in
Kε. For 2D component, slight discrepancies between Kσ and Kε at initial yielding are obtained,
particularly for components with large SCF, Kt. These are caused by other stress tensors,
identified by Pipelzadeh and Hardy (1997), (i.e., shear stress term, which is significant in the
short beams). However, for the axisymmetric component, the triaxial states-of-stress and
strain, at yield, are accounted for in the equivalent stress and strain terms and are, therefore,
equal in magnitude (i.e., (σeq)y = (εeq)y E).
       Figure 3 clearly shows that the onset of compressive yielding, Kσ, remains equal to Kt , as
previously identified in eq. (12) for monotonic loading. However, Kt is now equal to twice the
nominal load level. This is because reverse yielding occurs when the stress range is twice the
yield stress. This can be expressed as:

 λ = γ =  1/2Kt               (at yield)                  …..(14)

4.3    NSSC rule estimates



       In this section, the predicted strain and strain ranges are compared with the simple NSSC
rules for a variety of load conditions. The deviation between the NSSC rule estimates and finite
element predictions is expressed by the follow equation:

Deviation (N) = NSSC rule estimates/finite element predictions …..(15)

The load levels are expressed in terms of yield stress, σy, within the range 1.1< σy < 3.0.

Figure 4-  The deviation between NSSC rule estimates and finite element predictions with Kt

for (a) 2D and (b) axisymmetric components under monotonic shear & axial loads (expressed
in terms of yield stress, σy).

Figure 5-  The deviation between NSSC  rule estimates and finite element predictions with Kt

for (a) 2D and (b) axisymmetric components under repeated shear & axial loads (expressed in
terms of yield stress, σy, see Fig. 4 for notations).



Figure 4(a) and (b) show the deviations for the 2D and axisymmetric components under
monotonic loading. The degree of scatter in the results is clearly evident in particular in Fig.
4(a) for components with large Kt values and high nominal loads. However, for low to
moderate loads above yielding, the Neuber (for 2D) and Intermediate (for axisymmetric) rules
give reasonable estimates. The overall results show that both rules overestimate the finite
element predictions with the average values of N=1.1 and N= 1.06 for 2D and axisymmetric
components respectively, hence the NSSC rules are conservative.
For repeated loading, the degree of scatter is much lower than for monotonic loading as shown
in Fig. 5. This is because the components are subjected to lower nominal loads and therefore
produced less gross yielding. Average values of N=1.04 and 1.01 are obtained for 2D and
axisymmetric components respectively with both pessimistic and optimistic estimates being
obtained.

4.4     Summary of results of other published data

       A summary of a number of investigations (experimental and numerical) is presented in
Table 1 for 2D and axisymmetric components in order to confirm the suitability and the
accuracy of the NSSC rule estimates. The deviation, N, has been determined here on the basis
of the stress and strain data presented by these authors. The results show that the NSSC rules
are generally conservative for a wide range of geometries and loadings. The few cases where
the NSSC rules are optimistic yield values close to unity.

Table 1- Data for other published work.

References Component/loading Kt Kε Kσ Deviation
‘N’

Remarks

Hoffman
and Seeger

(1985)

Circumferential
notched round bar.
Cyclic push-pull
(Axisymmetric)

3.27
3.75
4.62
5.88
7.00

2.5
1.53
1.18
1.00

1.00
1.03
0.93
0.85

Finite element
predictions with EPP

material model

Hardy
(1983)

Flanged tube. Axial +
Thermal loading
(Axisymmetric)

1.38 1.40 1.11 1.10
Finite element

predictions with multi-
linear hardening. Results

compare well with
experiment (ERS

gauges)
Fessler and

Wilson
(1964)

Flat step bar. Axially
loaded projection
(Axisymmetric)

2.24
6.20

2.39
8.46

1.72
1.68

1.07
1.41

Results by experiment
(photoelasticity)

Kotani et al.
(1976)

Side notched plate.
Cyclic push-pull

(2 D)

2.00
2.60
2.30

2.20
3.38
2.62

1.80
2.03
1.89

1.00
0.99
1.07

Results by experiment
(ERS gauges)

Gowda and
Topper
(1970)

Infinite plate with
circular and elliptical

holes.
(2 D)

2.54
2.72
3.82
4.12

3.50
3.83
6.60
7.83

1.77
1.74
1.76
1.74

1.04
1.11
1.26
1.25

Results by experiment
for nomial stress = 30
ksi
(See Fig. 7 and 8)

Papirno
(1971)

Flat notched tensile
strips.
(2D)

1.50
1.59
2.00

- -
1.10
1.02
1.14

Experimental results.
The deviations are
obtained from Fig. 6,7 &
8 at notch stress = 160
ksi



5.     CONCLUSION

       In this study, the behaviour of a range of geometries and loading conditions using an EPP
material model (which represents the extreme condition in terms of strain) have been
considered for two typical cases of components with projections. The overall finite element
strain and strain range predictions compared favourably with the NSSC rule estimates (i.e.,
Neuber rule which is normally associated with plane stress problems, and Intermediate rule,
with index I=0.5, for axisymmetric components), in particular at low to moderate load levels.
However, at high load levels, which result in excessive yielding, both the NSSC rules provided
the upper bound and therefore give conservative fatigue life predictions. For both components,
Kσ was found to be independent of geometry. Similar findings have been observed by analysing
the results from a number of researchers for other 2D and axisymmetric components.
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