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Abstract. Automatic Systems to fluid flow visualization can help in solution of several Fluid
Dynamic Phenomena. Usually, these systems can be concerned of three fundamental steps:
data acquisition, processing and result display. There are several ways to achieve the first
step, which can be grouped as follows: simulation of mathematics elements, and
detection/description of fluid flow patterns characteristics. The detection/description is done
in real images captured in laboratory experiments and can form the basis of moderns fluid
flow visualization systems. These fluid flow patterns can be of several classes which, in
Dynamical Systems Theory, are called Critical Points or Singular Points. Even in this theory,
these patterns are modeled as different equation systems too. These models can revel intrinsic
aspects of fluid flow phenomena and are difficult to achieved in real time computation. So, in
this paper, we present a new efficient methodology concerning of four steps, which is also
part of a larger effort toward fluid flow patterns description. The time required to execute the
proposed method is less than the time required for the other methods here discussed. Some
examples, where the proposed methodology can be applied, are presented and the results are
discussed. Moreover, it is show that the proposed method can find some kind of occluded
patterns too.
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1. INTRODUÇÃO

Flow, even being of water, oil, gas or blood, has patterns which occur repeatedly. The
analysis of these patterns  may be the basis of several studies in a Fluid Dynamics
phenomenon. The fluid flow analysis may be fundamental in a complete system of flow
visualization. The traditional form to study flow which occurs in a fluid dynamics
phenomenon is through the human observation of photographs and videos taken off from an



in vitro experiment of the flow (Kopiev et al, 1996; Martins and J. H. Whitelaw, 1996). But to
study the flow comportment through the analysis of their patterns over digital images is still a
challenger. Then, recently, a series of methodologies have been proposed to detect several
kinds of patterns in fluid flow images (Ford, 1997; Mao, 1992; Rao and Jain, 1992).

Oriented texture patterns can be studied with these proposed methodologies too.
Recently, the analysis of oriented textures has been used over images which are not from fluid
flow phenomena but flow-like images as remarked by the work published in 1992 by Rao
(Rao and Jain, 1992). Rao showed several applications where these oriented textures need to
be detected, analysed and described. Some of the mentioned applications are: the analysis of
fractograph specimens, petrography(MackKenzie, 1982), defects in wood (Conners et al,
1983; . Erteld et al, 1964; Panshin et al, 1964.), fingerprint identification (Qinghan and
Zhaoqi, 1986) and classification of defects arising in semiconductor wafer inspection (Rao
and Jain, 1990).

In 1997,  Ford (Ford, 1997)  proposed a methodology, based in the Dynamical
Systems theory to detect flow-like patterns in fluid flow images. Ford achieved good results
for a highly oriented flow field and some degree of success for a turbulent flow and occluded
patterns. In his work,  Ford tried to resolve several problems of  previous methodology.
Ford’s methodology, as in Rao (Rao and Jain, 1992), has two principal parts: computing of
oriented texture fields and detection of patterns. Several other methodologies have been
proposed for specific patterns as vortices too (Mao, 1992).

Then, the need of development for automated inspection of flow-like patterns has been
evident. In the present work we propose a methodology, which is an ongoing work and  based
in these recent works, to detect patterns in fluid flow images. Our approach has four principal
steps and we intend, in the future, to run this method in a complete flow visualization system
to study turbulent blood flow outside of cardiac prothesis.

2. PREVIOUS WORKS AND THE PROPOSED METHODOLOGY

As related in the last section, several methodologies have been proposed to detect
flow-like patterns in digital images to analyze fluid dynamics phenomena as textured oriented
surfaces. We remark two of them. Rao and  Jain’s methodology (Rao and Jain, 1992) which
uses some kind of segmentation, patterns matching and dynamical system estimation to
describe critical points in gray level images. The disadvantage of this method is the O(n3)
complexity due to the estimation of dynamical systems parameters over the whole image.
Ford proposed a method (Ford, 1997) to detect patterns in fluid flow images and achieved
good results for highly oriented images and some degree of success for some turbulent
images. Ford’s methodology could detect some kind of occlude points and even run over
some bad resolution images. To reduce the noise influence, problems due to bad resolution
and ambiguities, Ford’s work defines a concept of energy E for gray levels images. According
to his work, each point at the image has a value of energy which is proportional to the
definition of the direction at this point. Then, E is used in many other calculations of  the
method as a weight of influence for each point. The idea is as follows: if a gray level of a
specific point is used to achieve some value, then, points with low energy E, and consequently
low definitions,  will have low influence on the calculus, and vice-versa. The high
computational time to estimate E and the flow orientation is a disadvantage of the Ford’s
method too.

2.1 The proposed methodology



The proposed method involves four steps: oriented texture detection; potential critical
point location; matching patterns classes and patterns describing. We remark that our method
follows the literature tendency on flow-like pattern detection but differs from these related
works in some points. Our method detects flow-like patterns through the use of templates to
match the patterns and we do not need to estimate the dynamical systems A matrix if we do
not wish to describe symbolically the patterns. Any way, at the end of the methodology we
include a module to estimate these matrices because some applications do need them.
Basically, we try to find points which have high probability to be a critical point and run the
remainder of the method only over these candidate points. We advocate that this approach
reduces the total amount of computation time.

2.1 Detection of oriented patterns

In  Rao and  Jain’s and  Ford’s methodologies, at the initial part of the methods, it is
used a Gaussian filter to smooth the input image to reduce the noise influence during the flow
orientation computation. This approach has the disadvantage to eliminate small features from
the original image and may influence the next steps. After the Gaussian soothing, both
methods employed some kind of steerables bandpass filters (Freeman and Adelson, 1991; Rao
and Jain, 1990) which are a linear combination of x and y basis filters, to estimate the flow
directions in the smoothed image.

In the proposed method, as a first step, we use simple Sobel operators to estimate the
flow orientation. This  was chosen due to its simplicity and low time computation. The flow
direction at each point (x,y) is computed as θ = arc Sy Sx tan( / ) , where Sx and Sy are the
answers of the Sobel operator in the x- and y-directions, respectively. The output of this first
step is a two-dimensional matrix where each point (x,y) is the flow direction at the (x,y)
position on the image. Figure 1 shows an example where we applied the first step of the
method. Figure 1.a shows a gray level image where a cylindrical bar inside the fluid flow
produces two vortices, a saddle point and an occluded saddle point. The two vortices positions
are pointed by the arrows labeled v; the position of the saddle point is indicated by an arrow
labeled s and the occluded saddle point is indicated by an arrow labeled so.

Figure 1.b presents the flow directions detected by the Sobel operator over the original
image. To avoid clutter, the orientation field is calculated for each point in the image, but it is
displayed in a sampled form. Figure 1.c shows the flow fields superimposed to the original
image.  Obviously, the main output  of this first step is not what we showed in Figure 1, but a
matrix whose values are the directions of the flow. We make the remainder calculus always
over this matrix.

2.2 Potential critical points detection

The second step of the method consists of the  detection of  the potential critical points
in the image. This step reduces considerably the time computation of the remainder method
because it selects only points with high probability to be a critical point. So the estimation of
the dynamical systems A matrix is done only with the potential critical points and not with all
image points.

According to the Dynamical Systems theory (Arrowsmith and Place, 1992; Smale and
1974), around a critical point, the flow directions present monotonic changing, increasing or
decreasing. Consider an imaginary circle whose radius presents approximately the size of the
pattern we wish to detect. In other words, this circle covers totally the patterns that we are
finding, as shown in Fig. 2. According to this theory when we move in a counter-clockwise
manner inside this imaginary circle, around a critical point, the flow directions change



monotonicaly as we move from a radius to another. If we have, for example, a node point, this
changing is increasing and, in the case of a saddle point, this changing is decreasing.

According to what was above explained, we can establish a special criterion to detect
potential candidates to be a critical point. This criterion is as follow. At any W circular region
of the image, if there is a monotonic changing of the flow directions around the central point
of this region, it is considered to be a potential critical point, otherwise, this point is rejected.
In this work, we use this criterion to label the potential critical points and make an estimation
about the real critical points. This approach is adapted from Ford’s paper.

It is obvious that the radius of the circle, or the W circular region’s size, will have
strong influence over the method’s results, particularly over the  pattern’s size. If we choose a
small W size for the region, we will not detect larger patterns, otherwise, if we choose a large
W size we probably will have problems to detect small patterns. We try to estimate the
pattern’s size by estimating the dynamical system A matrix for each patterns found.

To detect occluded points, at this step, we establish a threshold for the monotonic
changing of the flow directions. In other words, we label as  potential critical points all the
points which presents this characteristics at 50% inside of the W circular regions. Then, we
may find critical points 50% occluded. In this paper we call these parameters Dm (Degree of
monotonicity). For this ongoing work, we are not interested to detect occluded points,
although we remark that our method may detect it.

The results achieved in this step may generate a great amount of potential critical
points, but even so, this number  will be less than the total points originally in the input
image. Then, as we just discoursed, this reduces the amount of computation time to the next
method’s steps.

(a) (b)

(c)
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Figure 1. (a) Fluid flow input image with two vortices, indicated by arrows labeled v, a saddle point, indicated by an
arrow labeled s and an occluded saddle point, indicated bay an arrow labeled so; (b) flow directions detected by the
Sobel operator; and (c) flow fields superimposed to the original image.



Figure 2. A point P(x,y) inside a W circular region with five lines, each one with θi directions. The flow directions are
the αi values. If we moved, over the circle, from a line which direction is θi to another with direction is θi+1  and the
flow direction changes monotonicaly (incresing or decrising) then the point P is a critical point. In case of this Figure,
the flow directions αi are monotonicaly creasing due the central point P of the W circular region is at a node point.

2.3 Detecting critical points classes

In this step, which we consider the most important of the method, effectively, we
detect the patterns in the image. To do this, we use the labeled points found in the last step. In
the detection of the pattern’s classes, we use some templates as shown in Fig. 3 for a center
point. These templates are, in true, two-dimensional matrices whose positions contain the
flow template’s direction. Obviously, to avoid clutter, like in Fig. 1, we show the template’s
directions in a sampled form.

(a) (b)

Figure 3. (a) The center template used to match flow-like nodes or spirals images; (b) a flow-like node image.

Each template dimension is fixed as been approximately the size of the expected
pattern. In practice, we use as the template’s size the same W region size in pixels, that we
used at the last step to find the potential critical points. We will try to achieve the real
dimensions of the patterns in the next step.

These templates, showed in the Fig. 4, are matched only with the potential critical
points founded at the last step. We claim that this approach reduces the computational time to
detect the patterns. This approach achieves the patterns locations.

In  Rao’s method, we find a good technique to achieve matching, and we use this
approach in our proposed method. Equation 1 shows the expression which is used in the
matching.
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Figure 4. Three classes of templates to match flow-like patterns: (a) center; (b) saddle; and (c) node.

In equation 1, ),( jiα  and ),( jiβ  are the flow direction and template direction,

respectively, at (i,j) position and I is the region of the template. According to Equation 1, S is
smaller as the templates and patterns are equals. We note that in some matching, we can have
a S minimal, but probably we do not have S = 0. Then, we should establish a certain threshold
Ts to be the result of the matching S. In other words, all potential critical points whose values
of matching S are less or equal to Ts should be considered a detected pattern in the original
image.

To avoid  noise and low resolution problems around the pattern’s center, as we just
discoursed,  the matching is done only inside the limited area by the circles, as shown int the
Figure 5.

Figure 5. A   template with two circled regions. The matching is done only inside the limited area by the two circles.
This approach avoids bad resolution regions inside the small circle.

2.4 Dynamical systems estimating

In the final step, after we estimated the critical points positions and classes, we can
estimate each found pattern with the Dynamical Systems which describe mathematically the
pattern. Although, the templates used in the last step, had been  sufficient to detect the
position and the class of the desired pattern, many applications of oriented texture analysis
like industrial inspection and even fluid flow, would wish a mathematical description of the
these found patterns. This step would be called symbolic description of the patterns, as Rao’s
paper presents. In other words, when we have a texture oriented image we can find a synthetic
image whose patterns are mathematical models of the original image.
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To generate the synthetic image, we use the dynamical systems theory. Consider the
differential equation system (2) and its general form (3), which may represent any pattern
found in the last step. In this equation, the elements of ],[ ,, ′= jiji yxv ���  are respectively the Sx

and Sy responses of the Sobel operator at the first step of the proposed method, the elements
of the vector ],[ ,, ′= jiji yxv  are the locations of the patterns in the original image and

],[ ),(),( ′= jiyjix ttt allow some translation of the origin. The A matrix should be estimated

according to the description of the found pattern, as exposed in  Rao and Ford’s papers. The A
matrix may be estimated by minimizing:

( ) 22 errorvtAv =−+ � (4)

The A matrix is estimated for each pattern found in the last step. Again, we calculate
the values inside a circular region W, as showed in Fig. 5, but now, we vary the radius of the
internal and external circles to obtain the best possible dimensions of the patterns.

3. RESULTS

  In this section we present results of applying our methodology to several real images.
These images have been selected from the domains of fluid flow visualization . The method
was tested on a variety of experimental flow fields images, and four examples are included
that illustrate the proposed methodology. The following parameters were fixed for all four
experiments: the W circular region has inner radius Ri equal to 6 pixels length and outer
radius Ro is equal 20 pixels length. So, the W circular region is inside a 40 x 40 area, in pixels.
These values was chosen to be approximately the size of the expected patterns we wish to
detect; we partition the W circular region about 36 areas, each one with a 10o field of view for
an operator of Fig. 2. All template sizes are 40 x 40 squared in pixels. Again this size was
chosen according the size of patterns we wish to detect; the threshold Ts = 60%  of 1/S  when
S is the result of a perfect matching between the pattern and template. Then, for a 40 x40
template, according Equation (1), Ts was fixed at 960. The degree of monotonicity Dm, was
chosen as 50%. In other words we labeled as potential critical points all points which have at
least 50% of monotonicity around its center as just discoursed at Section 2.1. These
parameters were selected throughout intuition and experimentation.

The first experiment is showed in Fig. 6. This is the same image was showed in Figure
1, where there are, in Figure 6.a, a cylindrical bar inside a flow fluid generating two vortexes ,
one saddle point and one occluded saddle point. Figure 6.b show in a sampled form the flow
direction after step of the method, as just discoursed. Figure 6.c show the output of third step
where we can see a set of candidates points which are circled. The concentration of false
alarms is near real critical points. This is due the fixed degree of monotonicity we fixed



before. It occur in all the experiments. Figure 6.d show the final three patterns found, two
vortex and one saddle point, as we circled. The occluded saddle point, which occur left beside
of cylindrical bar was rejected as a pattern. As we just sad, we are not interested in this paper
in partial occluded pattern, although we remark that our method may detect it too.

The second experiment, showed in Fig. 7, is a  flow induced bay an oscillating
cylinder. Where streamlines exist, this image has a strongly oriented texture that provides a
low noise estimate of low orientation. There are about four vortexes near at each image’s
corner and about three partially occluded saddle point around the image’s center. In Fig. 7.b
we show, in a sampled form, the flow directions superimposed to the original image, Figure
7.a. In the Fig. 7.c we circled all candidates critical points found in the third step of the
method. The output of the method, showed in the Fig. 7.d, is the four corner’s  vortex and one
saddle point. This saddle point was detected because it is not totally occluded. We can detect
the remainder of the partially occluded critical points as we change the experimental
parameters. For example, if we change Dm from 50% to 45% or less or Ts from 60% or more,
the remainder occluded critical points may be detected.

The third experiment is a simple flow noise image of only a node point. As we showed
for all the experiments the Fig. 8.b show the flow directions in a sampled form. Fig. 8.b show
the output of third step. This is a strongly oriented image with no occluded points and a
unique patterns which is near the image bottom, so the Ts parameter of 960 and Dm of 50% is
not ideal for this kind of image and we detect several of potential critical points, as showed
Fig. 8.c by circled points. But, in the final step, as Fig. 8.d shows , the matching eliminated all
these points and only the real critical point remainder.

In the fourth experiment we  present a flow image with low coherence. This is a
chaotic image and does not have well defined streamlines or a regular texture. In fact it is not
clear to human observers which structures in the image are coherent, although there are
clearly a vortex-like structure. Figure 9. We can see in the image only a center point and
several occluded center and saddle points. In the Fig. 9.b we show the flow directions in a
sampled form. Due low coherence for these fixed parameters we detect several potential
critical points and in the output of the four step we see several critical points  found. Some of
these points are partial occluded points.

4. CONCLUSIONS

We proposed a method to detect and describe some kind of flow-like patterns. We use
three principal steps in our method: flow direction detecting, potential critical points detecting
and matching patterns. This approach have a relative low computational time. If the
application require a mathematics description of the critical points found, we can include a
four step in the and of the method estimating the differential equation system to each critical
point achieved in the third step. The proposed methodology is based on current methods in the
literature. In the future, we are interested in applying this method over turbulent flow blood
outside of cardiac prothesis in a complete flow visualization system.

We can found floe-like patterns with fixed parameters which allow us to detect all kind of
critical points if it’s run at a coherent image with clear patterns structures. To these images we
can work with a height Dm and Ts parameter. If the images have low coherence and not clear,
to a human observers,  pattern we should work with a relatively low Dm and Ts values, but we
can not define all the flow-like structures detected.

The most computational time of the method is clearly the second step, potential critical
points detecting. So, we suggest to parallelise these step to accelerate the method. We plan to
pursue this direction of research in the future.
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Figure 6. A cylindrical bar inside a flow fluid generating
patterns. (a) original image; (b) flow directions showed in
a sampled form to avoid clutter; (c) potential critical
points detected; (d) final patterns found: two center and
one saddle point.

(a) (b)

(c) (d)

Figure 7. A flow induced by an oscillating cylinder. (a)
original image; (b) flow directions showed in a sampled
form to avoid clutter; (c) potential critical points
detected; (d) final patterns found: four flow-like vortexes
and one partially occluded saddle point near the image’s
center.

(a) (a)

(c) (d)

Figure 8. A height coherent image of a node point. (a)
original image; (b) flow directions showed in a sampled
form to avoid clutter; (c) potential critical points detected.
Due Ts and Dm parameters the algorithm detected many
false potential patterns; (d) final patterns found: one node
point.

(a)

(c) (d)

(b)

Figure 9. A low coherence image with many not clear
patterns. (a) original image; (b) flow directions showed in
a sampled form to avoid clutter; (c) potential critical
points detected; (d) the algorithm detected a center
patterns and many others occluded patterns and not clear
structures.

Acknowledgments

 The authors are grateful to CNPq, CAPES and FAPEMIG for the financial support to this project.



REFERENCES

D. K.  Arrowsmith and C. M. Place, 1992. Dynamical Systems: Diferential Equations, Maps and Chaotic
Behavior, Chapman and Hall, New York.

R. Conners, C. W. McMillin, K. Lin and R. E. Vasquez-Espinosa, 1983. Identifying and locating surface defects
in wood: Part of an automated lumber processing system, IEEE Trans. on PAMI 5, pp. 573-582.

H. Core, W. Cote and A. Day, 1979. Wood Structure and Identification, Syracure University Press, Syracure.

W. Erteld, H. Mette and W. Achterberg, 1964. Defects in Wood, Leonard Hill, London.

R. M. Ford, 1997. Critical Point Detection in Fluid Flow Images Using Dinamical Systems Properties, Pattern
Recognition. 30, no. 12, pp. 1991-2000.

Fractography features revealed by light microscopy, in Metals Handbook, vol. 9: Fractography and Atlas of
Fractographys (8th ed.). Metals Park, OH: Amer. Soc. Metals.

W. T. Freeman and E. H. Adelson, 1991. The design and use of steerable filters, IEEE Trans. on PAMI 13(9),
pp. 891-906.

V. F. Kopiev, M. Yu. Zaitsev, L. P. Guriashkin, and V. A. Yakovlev, 1996. A Thecnique for Visualization of the
Turbulent Vortex Ring. Atlas of Visualization II, Chapter eight, The Visualization Society of Japan.

W. S. MackKenzie, 1982. Atlas of Ingeneous Rocks and Their Textures, Wiley, New York.

Z. Mao, 1992. Computing optical flow in rigid and nonrigid object motion, Ph.D. Thesis, Department of
Electrical and Computer Engineering, University of Arizona, Arizona.

L. A. S. B. Martins and J. H. Whitelaw, 1996. Visualization of the Flow Into and Out of Hole in a Duct Wall,
Atlas of Visualization II, Chapter two, The Visualization Society of Japan.

A. Panshin, C. D. Zeeuw and H. Brown, 1964. Textbook of Wood Technology, McGraw Hill, New York.

X. Qinghan and B. Zhaoqi, 1986. An appoach to fingerprint by using the atributes of feature lines of
fingerprints, in Eight Int. Conf. Patt. Recognition, Oct., pp. 663-665.

Rao, A. R. and Jain, R. C., 1992. Computerized Flow Filed Analysis: Oriented Texture Fields, IEEE
Transactions on Patterns Analysis and Machine Inteligence, vol. 14, no. 7, july.

A. R. Rao and R. Jain, 1990. A classification scheme for visual defects arising in semiconductor wafer
inspection, J. Crystal Growth, vol. 103, pp. 398-406.

A. R. Rao and B. G. Schunk, 1991. Computing oriented textures fields, CVGIP: Graphical Models Image
Process. 53(2), 157-185.

S. Smale and M. W. Hirsch, 1974. Differential Equations, Dynamical Systems and Linear Algebra, Academic
Press, New York.


