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Autonomous vehicles are programmable systems performing a multitude of tasks. Today,
they are intended for material handling, transportation (people and load), decontamination,
fire fighting, rescuing and many others hazardous activities. Autonomous navigation is
essentially a trajectory control problem. In general terms, the control system must execute a
given task, such as reaching a target, while avoiding obstacles. The intrinsic difficulties of the
autonomous navigation problem have captivated many artificial intelligent researchers who
have found it to be of considerable challenge (Fabro & Gomide, 1996). Navigation control of
autonomous mobile vehicles is a research area that can be divided into two main approaches:
global path planning, based on a priori complete information about the environment, and local
path planning, based on sensory information in uncertain environment where the size, shape
and location of obstacles are unknown (Beom & Cho, 1995). The navigator is a navigation
and obstacle avoidance controller that generates the steering and velocity commands for the
vehicle.

Global path planning methods can solve the path planning problems for completely
known environments. But, they can not be used for navigation in complex and dynamically



changing environments, where unknown obstacles may be located on a priori planned path.
To overcome these difficulties, methods considering real-time environment information from
sensors must be considered.

Local path planning methods uses information of the sensors (like optical sensors,
ultrasonic, sonar and laser) to provide environmental information for the vehicle’s navigator.
Based on sensor readings, the vehicle should be able to perform local path planning and to
take appropriate control actions. Conflict can appear, e.g.: go to goal position vs. obstacle
avoidance.

Fu & Liu (1990) used a graph search algorithm (“visibility graph”) to finding a
minimum-distance collision-free path in a 2D environment. Wang & Tsai (1991) used a
modified version of the least-mean-square-error classifier in pattern recognition to compute a
local collision-free path for navigation in indoor corridors. Feng & Krogh (1991) proposed an
algorithm  for  path  planning  that uses a feedback solution, where the on-line sensor data can
be used to generate dynamically the steering commands for the vehicle. Zapata ����
" (1994)
developed a method for fast outdoor mobile robots based on deformable virtual zone. The
mobile robot has no model of its environment but can measure any intrusion of information
(proximity-type information) in the direction of its own motion.

But, conventional controls are not suitable for navigation in complex and dynamically
changing environments where unknown obstacles may be located on a priori planned path.
Conflict of objectives, like go to goal position versus obstacle avoidance, can appear. To
overcome these problems, many approaches have recently been developed using fuzzy sets
and neural networks. Beom & Cho (1995) used reinforcement learning to tune a fuzzy rule
base, and to obtain adaptive behavior during interaction with the environment. Baxter &
Bumby (1995) used a fuzzy logic controller, inhibitive rules and the rule spreading and
windowing techniques for the navigation in presence of obstacles. Fabro & Gomide (1996)
used a self-organising neuro-fuzzy controller and a proportional behavior selector. The aim of
this work is to compare two different approaches to obtain the obstacle avoidance behavior in
complex and dynamically changing environments: inhibitive rules previous shown in (Becker
& Dedini, 1997) and a proportional behavior selector (Becker & Dedini, 1998).
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The use of fuzzy logic in controls is well documented in literature. Initially the input
variables are fuzzified and linked, via a set of linguistic rules, to the fuzzy output during the
composition and encoding stages. The fuzzy output is then defuzzified to produce a crisp
output value. The approach adopted here is to have guidance plans for the vehicle expressed
as fuzzy rules and continually apply these rules so as to be able to react appropriately in face
of changing conditions. By adopting such a fuzzy logic based controller, only the initial and
the final positions of the vehicle are specified and a set of linguistic rules is used to guide the
vehicle to its goal, taking any necessary action to avoid obstacles on its way.

The development of the fuzzy controller is conveniently divided into two parts:
navigation control, and obstacle avoidance control. An important principle is adopted at the
outset: the obstacle avoidance structure should always be active but should not affect the
normal operation of the vehicle unnecessarily. This principle requires that the navigation
control and obstacle avoidance be a carefully integrated control structure so as to prevent
conflicts between the navigation control and obstacle avoidance control. The controller uses
“max-min” inference and the correlation minimum encoding technique to give a wide range
of output values.
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The basic navigation controller is responsible for moving the vehicle form start position to
its goal position defined in terms of (xf, yf, θf), see Fig. 1.

To achieve this control, five principles were adopted in the development of the navigation
control sets (Baxter & Bumby, 1995):

1. If the vehicle is 
�
(�$�� from the goal position, steer so as to head straight towards it,
that  is: θhe → 0;

2. If the vehicle is a ������������
	��from the goal attempt to move the vehicle to line up
behind the goal heading towards it, that is θfe → 0;

3. If the vehicle is a ���

������
	�� from the goal position, try to line up directly with the
center-line, that is: θhe e θfe → 0;

4. If the vehicle is 
�������
�����������		���� steer away from the goal for a new approach;

5. If the vehicle is �
����� �
� ���� ��� ���� (��
� �������
� try to achieve the demanded final
orientation , that is: θoe or θhe + θfe → 0.

Figure 1 - State variables and global coordinate system.

The following Equations derive the values of the state variables from the global
coordinates of the vehicle and its goal:
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��1tanθ     (1)

   θIH�,�θV���θI     (2)

   θKH�,�θU���θV     (3)

   θRH�,�θU���θI     (4)

Such navigation control principles allowed the input fuzzy sets are shown in Figs. 2 to 5
and the linguistic names for distance and error angles sets are shown on Tables 1 and 2,
respectively. To see more clearly the interaction between the fuzzy rule sets, they are
conveniently represented by a fuzzy associate memory bank matrix on Tables 3 to 6.



Table 1 - Linguistic names for distance.

Set Label ZE S M L
Set Name Zero Small Medium Large

Table 2 - Linguistic names for error angles.

Label Set Name Label Set Name
NA Neg. Away PA Pos. Away
NB Neg. Big PB Pos. Big
NP Neg. Perpend. PP Pos. Perpend.
NL Neg. Large PL Pos. Large
NM Neg. Medium PM Pos. Medium
NS Neg. Small PS Pos. Small

NVS Neg. Very Small PVS Pos. Very Small
NZ Neg. Zero PZ Pos. Zero

Figure 2 - Fuzzy set definition for θfe.

Figure 3 - Fuzzy sets definition for θhe and θoe.

Figure 4 - Fuzzy set definition for df (distance to goal).



Figure 5 - Fuzzy set definition for θoutput.

Table 3 - Fuzzy associate memory matrix for df (ZE).

θfe

PA PB PP PL PM PS PZ ZE NZ NS NM NL NP NB NA
PA ZE ZE ZE ZE ZE ZE ZE ZE ZE ZE ZE ZE ZE ZE ZE
PP ZE ZE ZE NB NB NB NB NM NB NB NB NB ZE ZE ZE
PM NB NB NB NB NB NB NS NS NS NB NB NB NB NB NB
PS NS NS NS NS ZE NM NVS NVS NVS NM ZE NS NS NS NS

θoe ZE PS PS PM PM PS PS ZE ZE ZE PS PS PM PM NS PS
NS PS PS PS PM PM PS PVS PVS PVS PS PM PM PS PS PS
NM PB PB PB PB PB PB PS PS PS PB PB PB PB PB PB
NP ZE ZE ZE ZE ZE ZE ZE PM ZE ZE ZE ZE ZE ZE ZE
NA ZE ZE ZE ZE ZE ZE ZE ZE ZE ZE ZE ZE ZE ZE ZE

Table 4 - Fuzzy associate memory matrix for df (S).

θfe

PA PB PP PL PM PS PZ ZE NZ NS NM NL NP NB NA
PA ZE ZE ZE NS NS NM NM NM NB NB NB NB NB NB NB
PP PS ZE ZE NS NS NS NM NM NB NB NB NB NB NB NB
PM PM PS ZE ZE NS NS NS NM NM NS NS NM NB NB NB
PS PB PB PM PS ZE ZE ZE NS NS NS NS NM NB NB NB

θhe ZE PB PB PB PM PM PS ZE ZE ZE NS NM NM NB NB NB
NS PB PB PB PM PS PS PS PS ZE ZE ZE NS NM NB NB
NM PB PB PB PM PS PS PM PM PS PS PS ZE ZE NS NM
NP PB PB PB PB PB PB PB PB PM PS PS PS ZE ZE NS
NA PB PB PB PB PB PB PB PB PM PM PS PS ZE ZE ZE

Table 5 - Fuzzy associate memory matrix for df (M).

θfe

PA PB PP PL PM PS PZ ZE NZ NS NM NL NP NB NA
PA ZE ZE ZE NS NS NS NS NB NB NB NB NB NB NB NB
PP PS PS ZE ZE ZE NS NS NM NM NM NM NM NB NB NB
PM PM PM ZE ZE ZE ZE PS NS NS NM NM NM NB NB NB
PS PB PB PM PB ZE ZE ZE NS NS NS NM NM NB NB NB

θhe ZE PB PM PM PS PS ZE ZE ZE ZE ZE ZE NS NM NM NB
NS PB PB PB PM PS PS PS ZE ZE ZE ZE NS NM NB NB
NM PB PB PB PM PM PS PS PS PS ZE ZE ZE ZE NM NM
NP PB PB PB PM PB PM PM PS PS PS ZE ZE ZE NM NS
NA PB PB PB PB PB PB PB PS PS PS PS PS ZE ZE ZE



Table 6 - Fuzzy associate memory matrix for df (L).

θfe

PA PB PP PL PM PS PZ ZE NZ NS NM NL NP NB NA
PA NM NM NM NM NM NM NM NB NB NB NB NB NB NB NB
PP NM NM NM NM NM NM NM NB NB NB NB NB NB NB NB
PM NS NS NS NS NS NS NS NM NM NM NM NM NM NM NM
PS ZE ZE ZE ZE ZE ZE ZE NS NS NS NM NM NM NM NM

θhe ZE ZE ZE ZE ZE ZE ZE ZE ZE ZE ZE ZE ZE ZE ZE ZE
NS PM PM PS PS PS PS PS PS ZE ZE ZE ZE ZE ZE ZE
NM PM PM PM PM PM PM PM PM PS PS PS PS PS PS PS
NP PB PB PB PB PB PB PB PB PM PM PM PM PM PM PM
NA PB PB PB PB PB PB PB PB PM PM PM PM PM PM PM

A cruiser velocity (0.35 m/sec) is used during the path and the fuzzy velocity controller is used
only in the final approach. In other words, the controller slows the AVD down only as it approaches
the goal position: -#*������
	�����(��
��������
����.��//����
���
�	�������./01”. If the vehicle is in
a very complex environment (with several obstacles around, like in a narrow passage), the cruiser
velocity is reduced to 0.10 m/sec. In order to choose the better procedure to obtain the obstacle
avoidance behavior, two different techniques are used: inhibitive rules and proportional
behavior selector.

! ! �$(#)#'#%�
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The obstacle avoidance is added to the controller by a set of inhibitive rules of the form:
-#*������	
������23���/3*�����
��0�40��������53�0��43���#�3�.��//, ...”. This type
of rule set reduces the activation of an output set rather than increasing it, as would be the
case if a positive avoidance rule were used. The aim of the inhibitive rules is to produce a
mask vector that, when multiplied by the fuzzy vector, give an overall output vector. The
mask vector contains values indicating how acceptable each possible steering angle set is in
view of the proximity of obstacles. The input sets for the obstacle avoidance controller are
linked to particular areas of the certainty grid relative to the vehicle. The area covered by a set
is the area that the vehicle would occupy if a particular output set was activated. Each rule
links one or more of these input sets to a degree of inhibition of the corresponding output
steering angle set which ranges from 0, total inhibition, to 1, no inhibition. Sets covering areas
close to the vehicle have the greatest inhibitive effect and prevent any activation of their
linked output set, while more distant sets merely reduce the activation.

Table 7 - Avoidance rules set (Becker & Dedini, 1997).

Rule Obstacle Position Inhibitive Rules
P1 -100° ≤ θobstacle ≤ -35° PB, PM, PS, PVS and NVS
P2 -40° ≤ θ obstacle ≤ -20° PB, PM, PS, PVS and NVS
P3 -25° ≤ θ obstacle ≤ -5° PB, PM, PS, PVS, ZE, NVS and NS
P4 -10° ≤ θ obstacle ≤ 10° PM, PS, PVS, ZE, NVS, NS and NM
P5 5° ≤ θ obstacle ≤ 25° PS, PVS, ZE, NVS, NS, NM and NB
P6 20° ≤ θ obstacle ≤ 40° PVS, NVS, NS, NM and NB
P7 35° ≤ θ obstacle ≤ 100° PVS, NVS, NS, NM and NB

Table 8 - Degree of inhibition + distance to obstacle.

Distance [m] d ≥ 4 4 < d ≤ 3 3 < d ≤ 2 2 > d
inhibition 1,0 0,8 0,5 0



Figure 6 - Avoidance sets areas.

But, there are some problems with using inhibitive rules and center of gravity
defuzzification: the resultant output would still be to steer straight on as compromise between
going left or right round the obstacle. To guarantee that the defuzzified output will not fall
within one of inhibited sets, sliding window defuzzification is used. To provide alternative
suggestions, in the situation when all the output sets activated by the navigation controller are
inhibited by the obstacle avoidance rules, a technique called rule spreading is used (Baxter &
Bumby, 1995). The rule spreading operates by using a bell function to add activation values
to all the entries in the fuzzy fit vector, depending on their distance from the activated sets.

The activation of the �th set is multiplied by 
2)( ULN� −− and added to the activation of the �th set,

see Fig. 7-a. The sliding window defuzzification technique involves locating the set with the
maximum activation and then applying fuzzy centroid defuzzification to this set and its
immediate neighbors (defined by the window width), see Fig. 7-b.

Figure 7 - Examples of Rule Spreading (a) Slide Windowing application (b).

! , ���-��'#�$��
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In this case, a new fuzzy rule set is also used to make the obstacle avoidance (collision
controller). The selector takes its decision based on measurements of proximity of the target
(goal position) and the obstacle as follows. When an obstacle brings near, the navigation
controller output is inhibited and the collision controller output is stimulated: the selector
must avoid obstacles, independently of target position. This situation occurs when the vehicle
is near to the obstacles, but far from the target. When the vehicle is closer to the target than to
any obstacle, the selector must go towards the target, independently of obstacles. And, when

(a) (b)

bell
function



the target position is very closer to an obstacle, the selector must find a compromise solution
between the actions to be taken (Becker & Dedini, 1998). The formulae are:

   Collision: )15(1.0. −= REVW
G

REVWF
��α Navigation: IG

IQ �� 1.0.=α     (5)

Let �F and �Q be the defuzzified control actions from the fuzzy collision avoidance
controller and the fuzzy navigator controller, respectively. Thus the output control action � to
be adopted is determined by:

   
)()(

QF

Q

Q

QF

F

F
���

αα
α

αα
α

+
+

+
=            (6)

The output angle set for the collision controller is the same used in previous case
(inhibition rules). So, the structures of the fuzzy controllers (block diagrams) with the
application of inhibition rules and collision avoidance controller are shown on Fig. 8.

(a) (b)

Figure 8 - Block diagram of the controller with the application of IR (a) and PBS (b).

To simulate the vehicle behavior in complex environments, the software MatLab was
used. Simulations are made in an environment with 10 obstacles for the two techniques:
inhibition rules (IR) and proportional behavior selector (PBS). In both cases, a cruiser
velocity (0.35m/sec) was used during the path. The figures next show the path of the vehicle
and the output signal of the fuzzy controller (steering angle in degrees). The simulations in a
narrow passage used a cruiser velocity of (a) 0.1 m/sec and (b) 0.2 m/sec, and the obstacle
avoidance set was adapted (reduced).
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Figure 9 – Fuzzy controller with IR (a) and PBS (b)  – Target (10, 12, 90°).

Figure 10– Autonomous Vehicle (AV) behavior in a narrow passage with a Mobile Obstacle
(MO), (a) cruiser velocity equal to 0.1 m/sec and (b) cruiser velocity equal to 0.2 m/sec.
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Figure 11 – Output Angle of the fuzzy controller (a) cruiser velocity  =  0.1 m/sec and (b) 0.2
m/sec.

, ��	������	�

This work showed two different techniques to obtain the obstacle avoidance behavior in
autonomous vehicles: the use of inhibitive rules and the use of a proportional behavior
selector. In both cases, the same fuzzy navigator is used. The fuzzy controller with inhibition
rules produces a better control action. It provides the obstacle avoidance and navigation
behavior as the vehicle moves to goal without the need for an absolute path defined before
movement starts and without the vehicle zigzag. The fuzzy navigator has a great number of
fuzzy rules, due to the predetermined final orientation. In other applications, where the
vehicle mustn’t have a final orientation, the number of fuzzy rules is smaller. The narrow
passage problem was approached. In this situation the controller changes the cruiser velocity
and adapts the obstacle avoidance set to improve the vehicle performance. It is necessary to
do experimental tests to validate the fuzzy controller.
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