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Abstract. This paper is focused on a methodology intended for the optimum design of beams
as dynamic vibration absorbers (DVA’s). It utilizes a substructure coupling technique
exploring frequency response functions (FRF's), which enables to calculate the FRF's of the
composite structure (primary structure+DVA), given the  FRF's of these two components. The
FRF's of the primary system can be derived either experimentally or from an analytical
model, whereas the FRF's of the DVA  are obtained from a finite element model. The FRF's of
the compound structure are  used to define performance indexes related to the vibration level
of the system over a previously chosen frequency band. This index is then optimized, with
respect to the design parameters, which are chosen to be the physical and/or geometrical
properties of the finite element model of the DVA. The optimization is performed by using
Genetic Algorithms (GA’s). The first part of the paper is devoted to the formulation of the
substructure coupling technique, the definition of performance indexes and a brief review of
GA’s.  A numerical example is then fully described to illustrate the main features of the
proposed methodology.
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1.    INTRODUCTION

In its simplest form a DVA is essentially a mass-spring-damper appendage which, once
connected to a vibrating system, called the primary system (PS), is capable of absorbing the
vibration energy at the attachment point. Since its invention in the beginning of the century
(Frahm,1911),  this device has been extensively used for in different types of machines and
structures. A comprehensive study on the theory and practice of DVA’s is given by
Koronev & Reznikov (1993). Recent research developments on passive, semi-active and
active DVA’s are presented by Sun et al. (1995).

According to the basic principle of the DVA’s, the absorbing system has to be designed
so that its natural frequency when the connection coordinate is constrained not to move



matches the frequency of excitation. It has been demonstrated that, besides the simplest
single-degree-of-freedom type, more complex configurations can be used as vibration
absorbers, such as multi-degree-of-freedom lumped-parameter (Ram & Elhay,1996) and
distributed-parameter systems (Snowdon & Nobile,1980).

Beamlike dynamic vibration absorbers have been studied by some authors lately. Based
on Euler-Bernoulli beam theory, Jacquot & Foster (1997) utilized both exact and Rayleigh-
Ritz approximate analysis to obtain optimum design curves for  beamlike DVA’s applied to
single-degree-of-freedom primary systems. Damping was introduced in the form of a complex
modulus. Considering both single-degree-of-freedom and continuous beamlike primary
systems, Snowdon & Nobile (1980) analyzed the performance of several DVA configurations
and verified that beamlike DVA’s are broadly effective. Viscoelastic beamlibe dynamic
absorbers have been considered by Freitas & Espíndola (1993) in the context of a general
theory for the optimum design of neutralizer systems.

Although the use of beamlike DVA's has proved to be advantageous, from the practical
standpoint, a major difficulty is to select a set of beam parameters (physical and/or
geometrical), satisfying design constraints, so that the DVA will have a natural frequency that
coincide with the excitation frequency.

In this paper, a methodology for the optimal design of beamlike DVA's, applicable to
discrete multi-degree-of-freedom or continuous primary systems with general damping, is
proposed. It utilizes a FRF-based substructure coupling technique according to which the
FRF’s of the composite structure (primary system + DVA’s) are expressed in terms of the
FRF’s of these two components. The FRF's of the compound system are then used to define
scalar performance indexes related to the vibration levels of the system over a previously
chosen frequency band. These indexes are optimized, with respect to the DVA parameters,
which are assumed to be the physical and/or geometrical properties of the FE model of the
DVA. The optimization  is performed by using Genetic Algorithms (GA's), taking into
account design constraints.

One interesting feature of the proposed methodology is related to the fact that it can
handle FRF’s of the primary system which can be obtained either experimentally from
vibration tests or numerically from an analytical model. In the first case, the optimization is
not affected by modeling errors, though the effect of experimental noise has to be dealt with.

In the remainder, the formulation of the substructure coupling technique is first presented,
followed by the definition of performance indexes and a brief presentation of the basics of
Genetic Algorithms. Then, an example based on a numerically simulated structure is shown to
illustrate the main features of the proposed  methodology.

2.    A  SUBSTRUCTURE COUPLING TECHNIQUE BASED ON FRF’s

In this section the basic formulation of a classical substructure coupling technique
exploring FRF’s is presented. It has originally been proposed by Crowley et al. (1984) . More
recently, it has been assessed by Otte et al. (1991) and has been used by Rade & Steffen
(1999) in the context of the optimization of single-degree-of-freedom DVA's.

Given the FRF’s of the two substructures A and B, shown in Fig. 1, it is intended  to
determine the FRF’s of the assembled structure C, obtained by coupling A and B through a
set of coupling coordinates. For each configuration, the dynamic flexibility relations are:

( ){ } ( )[ ]{ }AAA FHX ωω =                                                                                   (1)

( ){ } ( )[ ]{ }BBB FHX ωω =                                                                             (2)



( ){ } ( )[ ]{ }CCC FHX ωω = ,                                                                               (3)

Figure 1 - Coupling of substructures

where: ω  designate the forcing frequency, ( ){ }ωAX , ( ){ }ωBX  and ( ){ }ωCX  denote the

vectors of harmonic response amplitudes of configurations A, B and C, respectively, { }AF ,

{ }BF and { }CF  are the vectors of the amplitudes of the harmonic excitation forces and

( )[ ]ωAH , ( )[ ]ωBH and ( )[ ]ωCH  designate the  FRF (receptance) matrices pertaining to A, B

and C, respectively.
Taking into account the partition of coordinates indicated in Fig. 1, Equations (1) to (3)

are re-written in the forms (for simplification, dependence on frequency is omitted ):
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The coupling between the substructures is enforced by imposing the equilibrium of forces
and compatibility of displacements at the coupling coordinates, expressed as follows:

{ } { } { } SCSBSA XXX ==                                                                                               (7)

{ } { } { } SCSBSA FFF =+                                                                                                   (8)

Introducing Equations (7) and (8) into Equations (4) to (6), after some algebraic
manipulations, the following expressions for the sub-matrices appearing in (6) are obtained:

NOTATION FOR THE COORDINATES

         : Free coordinates of  A             { } RAX

       : Coupled coordinates of  A       { } SAX

       : Free coordinates of  B              { } TBX

       : Coupled coordinates of  B      { } SBX

       : Free coordinates of  C            { } RCX

       : Free coordinates of  C           { } TCX

       : Coupled coordinates of  C     { } SCX

A B

CC
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In the context of the problem examined herein, substructure A can be considered as the
primary structure and substructure B can be seen as the DVA’s, so that configuration C
represents the composite (primary+DVA’s) structure. Moreover, assuming that the connection
is made through a single coordinate, the number of coordinates of "S" type in the equations
above is one.

The basic principle of DVA’s can be demonstrated by developing Equation (12). For this,
all the FRF’s appearing in this equation are expressed as ratios of two polynomials in the
forcing frequency, as follows (parenthesis are use in place of brackets to indicate scalar
quantities, assuming the connection is done at a single coordinate):
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In the equations above, the roots of the denominators  are associated with the natural
frequencies (poles of the FRF’s), while the roots of the numerators are associated with the
zeros (anti-resonance frequencies) of the FRF’s.

Introducing Equations (15) to (17) into Equation (12), one obtains:

( )( ) ( )( )
( )( )

( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( )SSASSBSSBSSA

SSBSSA

SSC

SSC
SSC DNDN

NN

D

N
H

ωωωω
ωω

ω
ω

ω
+

==                (18)

According to Equation (18), the FRF of the compound structure will have, among its
zeros, the roots of the polynomial ( )( )SSBN ω . Note that the zeros of ( )( )SSAN ω  remain

unchanged. Moreover, it can be demonstrated that the roots of ( )( )SSBN ω  are identical to the



natural frequencies of substructure B when the connection coordinate is grounded
(Rade & Silva,1999). Thus, if the absorbing structure B is designed so that one of the zeros of

( )( )SSBH ω   coincide with  the forcing frequency,  vibration amplitudes will vanish at the

connection coordinate.  However, it may be more convenient to select the DVA parameters so
as to guarantee minimum vibration amplitudes over a finite frequency band. This procedure is
addressed in the next section.

3.    OPTIMUM DESIGN OF  DVA’s  OVER A FREQUENCY BAND

3.1  Performance indexes

In the previous section it was shown how the FRF’s of the assembled system can be
expressed in terms of the FRF's of the primary system and the FRF's of the DVA. Once the
frequency band of interest and the coordinates at which vibrations are to be attenuated have
been defined, these FRF’s can be used to form performance indexes related to the vibration
levels of the compound system in the selected frequency band. Then, these indexes are
optimized for the optimal choice of DVA parameters. Assuming that de DVA is modeled by
finite elements, the design variables are chosen to be the physical and/or geometrical
characteristics of the model. Constraints can be imposed on the values of these variables to
meet design constraints.

For illustration, let us consider the case where a harmonic force iF  is applied at

coordinate i and the response at the coordinate j is to be minimized over a frequency band

UL ωωω ≤≤ , by attaching a DVA to either coordinates i or j. In this situation, some

performance indexes can be defined as, for example:
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{ }( ) { }( )[ ]{ }P,HabsmaxPJ jij2 ω=                                                                                   (20)

where p is the number of frequency lines in the band of interest, { }P  designates the vector of

design variables and jQ , j=1 to p denote weighting factors ascribed to each frequency line.

Various numerical optimization procedures can be used for the optimization of the select
performance index,  including the traditional gradient-based non-linear constrained algorithms
(Vanderplaats,1984) and Genetic Algorithms (Goldberg,1989). The latter were used in the
numerical application described in this paper and is briefly reviewed in the next section.

3.2. Genetic Algorithms – an overview

In this section, the fundamentals of GA’s and their basic operators are briefly reviewed.
For a detailed description, the reader should refer to Goldberg (1989).

Genetic algorithms are based on the principles of Darwin’s evolutionary law, i.e., they are
structured random search techniques that mimics the concept of natural selection
(Holland,1975).

In its simplest form, GA's comprise three operators: selection, crossover and mutation.
Two other operations are also considered as operators by some authors: coding and evaluation
of the fitness function.

The purpose of coding is to put the variables into a genetic design space. In this work a



binary codification is used to represent each variable Vi as a b-bit binary number, which
approximates 2b discrete numbers in the range of the variables, according to:
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where min
iV and max

iV  are the lower and upper bounds of the i-th continuous variable and bin

is an integer number between zero and 2b-1.
Considering the minimization of an objective function, during the evaluation operation, a

proper fitness index  is assigned to each candidate set in such a way that the lower the value of
the objective function associated to an individual candidate, the higher the fitness index given
to it. The algorithm starts with an initial population randomly generated over the whole search
space. Each member of the population  can be seen as a chromosome or a binary string. After
codification and initial evaluation, genetic algorithms work iteration by iteration on this
population of strings, in a way similar to natural population growth, where each generation is
evolved into another through reproduction, making use of the three operators.

The selection process is responsible for the choice of which individual, and how many
copies of it, will be passed to the next generations. An individual is selected if it has a high
fitness value, and the choice is biased towards the fittest members. A way to do that is to use a
proportional selection procedure, with the number of copies given by avgi ffn = , where

if is the fitness index of the i-th individual and avgf  is the average fitness index of the whole

population.
Crossover takes two strings (parents) from the mating pool and performs a randomly

exchange in some portions between them to form a new string (children). The crossover
occurs with a probability pc.

In a binary coding scheme, mutation involves switching individual bits along the string,
changing a zero to one or vice-versa. This operator keeps the diversity of the population and
reduces the possibility that the GA’s find a local minimum or maximum instead of the global
optimal solution, although this is not ever guaranteed. The mutation occurs with a
probability mp .

4.    NUMERICAL EXAMPLE

To illustrate the main features of the proposed method, a numerical application to a
structural system simulated by finite elements (FE) is presented. The primary structure is
depicted in Fig. 2, consisting in a bidimensional clamped-free frame whose FE model counts
40 Bernoulli-Euler beam elements, each one containing 2 nodes and 3 degrees-of-freedom per
node. The total number of degrees-of-freedom of the model is 120. The physical and
geometrical characteristics of the primary system are given in Table 1 and the values of its
first four natural frequencies are given in Table 2.

It is intended to minimize the vibrations in the y direction at node A,  in a frequency band
containing the first natural frequency, by attaching a beamlike ADV (BCD) at that node in the
way shown in Fig. 2. For the design of the ADV, an initial FE, containing 20 Bernoulli-Euler
bidimensional beam elements whose characteristics are given in Fig. 3 and Table 3 is used.



Figure 2 – Characteristics of the FE model of the compound system

Table 1. Physical and geometrical characteristics of the FE model of the primary system

Property Value
material density 7800 kg/m3

Young modulus 2,1×1011 N/m2

cross section dimensions 2,5 cm × 2,5 cm
cross-section moment of inertia 3,25×10-8 cm4

mass 73,0 kg

Table 2. Values of the natural frequencies of the primary system

Mode Natural frequency [Hz]
1 28,50
2 77,25
3 81,20
4 86,80

Figure 3 – Characteristics of the  FE model of the DVA, divided into 10 macro-elements
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Table 3. Physical and geometrical characteristics of the initial FE model of the DVA

Property Value
material density ρ =  7800 kg/m3

Young modulus E = 2,1×1011 N/m2

cross section dimensions b×h = 36,6 cm × 11,4 cm = 417,2 cm4

cross-section moment of inertia Iz  = bh3/12 = 4518,7 cm4

viscous damping coefficients c1 = 100 Ns/m ; c2 = 100 Ns/m
total mass mB= 2,54 kg

For the optimum design of the DVA, the following strategy is adopted: each pair of
neighboring elements of the model of the beam are first regrouped into a single macro-
element. These macro-elements are numbered consecutively from left as shown in Fig. 3. To

each macro-element is assigned a design variable α i
h , i =1 to 10, which is a dimensionless

multiplicative factor intended to modify the height of the cross section of the initial model.
Clearly, by applying this factor both the mass and the bending stiffness of the macro-elements

are changed. Dimensionless factors α i
c , i =1 to 2, to be applied to the initial values of the

coefficients of viscous damping, given in Table 3 are considered as design variables also.
Thus, the problem has a total number of 12 unknown design variables.

The main features of the optimization computations are the following:

• frequency band: [22 – 33 Hz] , containing the first natural frequency of the primary
structure.

• target FRF: ( )H AA ω (driving point FRF related to the vertical motion at node A).

• design constraints:

- mB ≤ 3,70 kg (total mass of the DVA must be less then 5% of the mass of
the primary structure)

- 0,5 ≤  h
iα  ≤ 3 , i =1 to 10

- 0,5 ≤ c
iα  ≤ 3  , i = 1 to 2

• performance index:   J = max{20 log10( abs [HAA(ω)] / 1×10-6 ) }

• Genetic algorithms:

- population size: 80
- mutation probability: 1%
- crossover probability: 90%
- maximum number of generations allowed: 150

The optimum values of the design variables obtained are given in Table 4 and the effect
of the attachment of the DVA on the amplitudes of the FRF ( )H AA ω  can be evaluated in
Fig. 5, where the target frequency band is limited by vertical lines. As can be seen,  the



attachment of the DVA leads to a significant reduction of the vibration level in the frequency
band of interest, with the complete removal  of the first resonance peak.

Table 4. Optimum values of the design variables

Design variable Optimum value Design variable Optimum value

α1
h 1,44 α7

h 1,91

α2
h 2,39 α8

h 2,60

α3
h 1,33 α9

h 2,28

α4
h 1,14 α10

h 0,82

α5
h 0,50 α1

c 2,91

α6
h 1,58 α2

c 3,00

          without DVA ;             Initial DVA ;             Optimal DVA

Figure 5 – Amplitudes of the FRF ( )H AA ω

5.    CONCLUSIONS

A methodology for the optimum design of beamlike dynamic vibration absorbers has
been proposed and illustrated with a numerical example. It has been verified that the method
can be conveniently used in practical design, since it is able to tackle the optimization
problem in a broad sense, taking into account general design constraints. Although the study
was limited to beamlike vibration absorbers, the methodology can well be extended to the
design of distributed parameter vibration of any  geometry.

It has all been verified that the method is computationally since, during the optimization



procedure, the FRF’s of the primary system are computed just once, while all the model
updating computations are confined to the DVA, whose FE model possesses a moderate
number of degrees-of-freedom.

Numerical applications have demonstrated that in spite of being more time consuming
than traditional gradient-based methods, Genetic Algorithms have demonstrated to be a very
efficient and robust optimization procedure.

In the sequence of this work the following aspects are currently being addressed: a) the
incorporation of structural damping in the FE model of the DVA; b) the design of DVA’s
intended for the simultaneous attenuation of vibration over several discontinuous frequency
bands; c) the use of experimentally derived FRF’s of the primary system.
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