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Abstract.  In the present investigation, a new form of space frame for rapid verification of co-
ordinate measuring machines (CMMs) is proposed and applied. This space frame has the form of
a tetrahedron and is referred to as a modular space frame as different configurations of
tetrahedron can be obtained easily and rapidly. The modular space frame comprises magnetic ball
links and a ball plate. A typical magnetic ball link consists of two magnetic cups and a carbon
fibre link, connecting magnetically, two high accuracy spheres. A technique based on a laser
interferometer system was developed to calibrate the magnetic ball links and the ball plate. The
volumetric error data obtained when a CMM measures the calibrated modular space frame can be
used to verify whether a CMM maintains the manufacturer specifications. The experimental
results have demonstrated that the modular space frame system has an acceptable repeatability
and provides a practical and cost effective mechanical artefact to determine the volumetric
accuracy of small/medium sized CMMs. The developed technique can be applied for calibration,
verification, periodic reverification and acceptance test of any type of CMM.
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1. INTRODUCTION

     Over the past two decades there has been a significant increase in the use, in the
manufacturing
industry, of three axis co-ordinate measuring machines (CMMs). These machines are capable of
measuring  a large number of critical features of complex components, often in a single operation.
This contributes to reduced time in inspection and permits the identification of errors from the
manufacturing process more efficiently and rapidly. To satisfy traceability requirements of most
industrial quality system, CMM must be periodically evaluated. That is an essential condition for
analysing whether the CMM maintains the manufacturer specifications. Also, evaluation of CMM
performance is necessary for obtaining correct measuring results. However, it is important to note
that CMM performance evaluation is rather complicated as CMMs are more complex measuring
device then most conventional measuring instruments.
     Many techniques to assess volumetric accuracy of CMMs have been proposed and applied
over the last two decades. Basically,  the methods can be classified into three groups of  common



techniques. They are: kinematic reference standard technique (Bryan,1982),  (Burdekin and Park,
1988), (Burdekin and Jywe, 1992); parametric calibration technique or synthesis method (Pahk
and Burdekin, 1991), (Huang and Ni, 1995) and transfer standard technique (Kunzmann et al,
1993;  Zhang, 1991). Unfortunately, none the existing techniques meet all requirements in terms
of consumed time, simplicity to use and measure, diagnosis of errors, thermal stability, ease to
transport  and inexpensive. Therefore, a critical need exists in order to overcome disadvantages
that existing techniques, to assess accuracy of CMMs, present. In this regard, it is necessary to
developed a new technique that  is capable of assessing the performance of modern CMMs that
incorporate software compensation systems. Also, the technique must be able to carried out both
verification and calibration of any type of CMM. Additionally, a new technique should require a
minimum number of mechanical transfer standard and should be simple to use.

2. MODULAR SPACE FRAME FOR RAPID VERIFICATION OF CMMs

     In order to verify  the performance of  CMMs a novel form of space frame was designed and
manufactured, as part this research  (Silva, 1997). This space frame has the form of a tetrahedron
which contains a sphere at each apex. The base of the tetrahedron comprises a ball plate that
contains three spheres. Each tetrahedron contains three magnetic ball links. A simple  magnetic
ball link comprises a link, connecting magnetically, to two spheres. One sphere is located on the
ball plate and the other at a space point  where three links are connected together, as shown in
figure 1. This space frame will be referred to as a modular space frame as different configurations
of tetrahedron can be obtained easily and rapidly. The number of possible configurations for a
given three ball plate is a function of the number of  available links of different length.

                 
                                  Figure 1    Typical modular space frame

        A mechanical artefact before being used to measure the volumetric error of a CMM must be
calibrated. Unlike other types of mechanical artefacts, the modular space frame developed in this
research is very simple to be calibrated. That is because the modular space frame itself needs not
be calibrated.  The calibration process only involves in calibrating the elements that define the
modular space frame, i.e.  magnetic ball links and the ball plate. Then, a computer program
calculates the co-ordinates of the apices of the tetrahedron by using the calibrated data. A
calibration technique based on a laser interferometer system, which is capable of calibrating both
magnetic ball links and ball plate, was developed at UMIST (Silva, 1996).
     Although a CMM has its own co-ordinate reference system, it is useful to establish a local co-



ordinate reference system on the component  to be measured. The main role of the local reference
system is to establish a relationship between the CMM and the component being measured. Thus,
a program to measure a particular component can be developed by considering the local reference
system instead of using the CMM co-ordinate reference system. Once a program to measure a
component has been developed, identical components can be measured by using the same
program.  An analogous principle has been applied to develop a program to measure the modular
space frame.

3.   PRACTICAL APPLICATION OF THE MODULAR SPACE FRAME

     The approach developed in this research was applied on a LK CMM. It  is a computer
numerically controlled co-ordinate measuring machine of the  moving bridge type. The machine
has XYZ travels of 600x500x400 mm, respectively.
     The machine incorporates air bearing and DC power drives on all axes. Also, the LK CMM
incorporates a Renishaw PH9 probe system and a Windows based software to control the
measuring process of the machine. This software is called Visual CMES and facilitates the
development of a computer program with which the LK CMM performs the measuring tasks.
This  software eliminates the need for specialist part programming skills by the use of graphical
representations or icons rather then text. Visual CMES provides a full suite of teach/learn
facilities to the user, as for example, learn sphere measurement, learn circle measurement, etc. In
this research, a computer program  to measured the modular space frame has been developed, by
using the programming facilities provided by the Visual CMES software. The program that
measures the modular space frame provides instructions to assist the CMM operator to set-up the
ball plate on the CMM table and to build up each tetrahedron configuration.

3.1  Test  to check the  repeatability of the modular space frame.

     A method has been applied to verify the repeatability of the modular space frame by using the
CMM itself. Primarily, the method consists in measuring three different tetrahedron
configurations of the modular space frame. Each different tetrahedron was measured three times.
The first and the second measurements were taken without removing the links. However, before
taking the third measurement the links were removed and set-up again, keeping the same
tetrahedron configuration. Table 1 shows the results of the repeatability test. By analysing  table 2
it can be observed that there is no significant variation between the length values which were
measured before and after the links being removed. This indicates that the modular space frame
has an acceptable repeatability which was within the repeatability of the CMM.

Table 1   Analysis of  repeatability of the modular space frame
  Frame number    Measurement       L1 [mm]       L2 [mm]         L3 [mm]

         4
           1
           2
           3

      170.148
      170.148
      170.146

     202.272
     202.271
     202.270

       180.752
       180.752
       180.752

       16
           1
           2
           3

      255.984
      255.984
      255.984

     170.146
     170.146
     170.147

         91.764
         91.764
         91.764

       33
           1
           2
           3

      301.067
      301.067
      301.067

     202.271
     202.270
     202.271

       180.749
       180.748
       180.749

        Note: L1, L2 and L3 (in millimetres) = measured length of the links that comprise the   modular space frame



3.2   Using the modular space frame for volumetric error measurement of  a  LK  CMM.

    The modular space frame has been applied to measure the volumetric error components of a
LK CMM. The measuring process is facilitated by the computer program which was developed
on the Visual CMES environment.  The process of setting-up the modular space frame, which
comprises in mounting the ball plate on the CMM table and building up the different tetrahedron
configurations, is simple and non-time consuming.
     Before starting the measuring process, the LK CMM was warmed up for a one hour period.
This procedure contributes to achieve the thermal stability of the machine. Some preliminary
thermal drift tests were carried out by probing the spheres of the ball plate at interval of one hour
after switching on the machine. The results showed that the drift was on an average of 3 µm in X,
5 µm in Y and 2 µm in Z. During one hour after the initial warm up period, the drift reduced
significantly to 1 µm in X,   1.2 µm  in Y    and  1 µm in Z, as shown by (Silva, 1996). This
confirms that the warm up period for one hour before taking measured data is desirable.
Additionally, before measuring the modular space frame, the re-qualification of the probe was
undertaken.
     In this practical application, six calibrated links of different lengths, were used to construct the
modular space frame. A computer program uses the calibrated data in order to generate all
possible tetrahedron configurations of the modular space frame based on the above data.
     Two data files are generated by the computer program that measures the modular space frame.
One contains the measured length of the links  that form each tetrahedron configuration of the
modular space frame. The other one  contains the measured co-ordinates of the master sphere of
each tetrahedron and the measured co-ordinates of the spheres of the ball plate. Most CMMs have
file accessing facilities such as disk drivers in their own computer. Thus, data files generated by
the computer program that measures the modular space frame can be saved onto either the hard
disk or a floppy disk. Then, those data files can be import, as input data, by a computer program
in order to establish the volumetric  accuracy analysis of CMMs. This indicates that the analysis
of the measured data can be performed off line. In other words, the CMM is used only to measure
the modular space frame as the measured data can easily be transferred to other computers or
imported  by a computer program.
     By comparing the calibrated and measured tetrahedron configurations of the modular space
frame it is possible to determine the volumetric error components (Exi,Eyi,Ezi) of the machine
under test. The volumetric error at  each point defined by the modular space frame is given as
follows:

             Exi=Xmi - Xi                                                                                                                  (1)
             Eyi=Ymi - Yi                                                                                                                  (2)
             Ezi=Zmi - Zi                                                                                                                   (3)

where,
 Xi,Yi,Zi,  are the calibrated co-ordinates of the  points generated by the calibrated
                modular space frame.
 Xmi,Ymi,Zmi,  are the measured co-ordinates of the points generated by the measured



                modular space frame.

     The volumetric error components (Ex,Ey,Ez) of the LK CMM, in which the proposed modular
space frame was applied can be used to fit a mathematical model to represent each volumetric
error component of the machine. Response Surface Methodology (RSM) was used to obtain such
a mathematical model as described by (Silva and Burdekin). Response surface methodology, or
RSM, is a collection of mathematical and statistical techniques that are useful for the modelling
and analysis of problems in which a response of interest is influenced by several variables and the
objective is to optimise this response. In practice, most response surface methodology problems
can be established by utilising either a first order model such as:

            g X Xo k k( , ) ...β β β β β= + + + +1 2                                                                                (4)

or     a second order model such as:
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Hence,  a  response Y, which is approximated by a polynomial function, can be written as
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   and,

      β=( XT X )-1 XT Y                                                                                                                (8)
 where

       β =  Vector that contains the coefficients of  regression
               or coefficients to be estimated (βo ,β1, ..., βk)
       X=  Matrix of independent variables
       XT = Transposed of X
       Y =  Vector of observed or measured values
        ε= error or discrepancies

                                                                                                                                 

       Also, by using the calibrated and measured data obtained by using the modular space frame it
is possible to evaluate the three-dimensional uncertainty of length measurement of the CMM
under test as shown in  section 4.

4.   APPLICATION OF THE MODULAR  SPACE FRAME TO EVALUATE THREE-
      DIMENSIONAL UNCERTAINTY OF LENGTH MEASUREMENT



     According to British Standard (BS 6808, part 2, 1987), uncertainty of length measurement is
the uncertainty with which the minimum (i.e. straight line) distance between any two points
within the working volume of the CMM can be determined with the machine probe and
measuring system. Three-dimensional uncertainty of length measurement is, also, defined as the
difference between the measured length and the true length of a mechanical reference artefact.
     British Standard(BS 6808, part 2, 1987) [13] establishes a procedure to evaluated the three-
dimensional uncertainty of length measurement. This procedure consists of measuring the true
dimensions of  a mechanical artefact such as gauge block, step gauge, etc., which is located at
different positions and orientation within the measuring volume of a CMM. The difference
between the measured and the true dimensions of the artefact defines the uncertainty of length
measurement. The expression U=±(A+KL)≤B   is used to represent the three dimensional (3D)
uncertainty of length measurement of a CMM. The constants A, K and B are supplied by the
CMM manufacturer. Thus, the length measurement uncertainty specified by the manufacturer can
be checked.
     In this research a method to evaluate three-dimensional (3D) uncertainty of length
measurement of  an arbitrary type of CMM has been developed. Primarily, the method consists in
taking into account the calibrated and measured dimensions of the modular space frame. To
achieve this objective the following steps should be performed. First, the distances between the
points generated by the calibrated modular space frame are calculated. Second, the modular space
frame is measured by the CMM under test. Third, the distances between the points generated by
the measured modular space frame are calculated. Finally, the difference between the measured
and calibrated  distances is calculated. That difference represents the 3D error of length
measurement and is given by the following equation:

  ∆L L Li mi ci= −                                                                                                                                           (10)
 but,
L X X Y Y Z Zmi mj m k j mj m k j mj m k j= − + − + −+ + +(( ) ( ( ) )( ) ( ) ( )

/2 2 2 1 2                                                   (11)

L X X Y Y Z Zci cj c k j cj c k j cj c k j= − + − + −+ + +(( ) ( ) ( ) )( ) ( ) ( )
/2 2 2 1 2                                                      (12)

where,
 j=1,2, . . . , np-1;   k=1,2, . . ., np-j
 np = number of points generated by the modular space frame
Lmi = ith measured length
Lci =  ith calibrated length
Xmj,Ymj,Zmj =  measured co-ordinates of the points generated by the measured modular
                       space frame.
 Xcj,Ycj,Zcj =  calibrated co-ordinates of the points generated by the calibrated modular
                      space frame.
     In this particular practical application, six calibrated links of different length were used to
construct the modular space frame which provides thirty-six points. Thus, the number of
distances (or lengths) that can be generated by these points is 630 and is given by the following
equation:
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where,



Nd=  number of distances or lengths (generated by the modular space frame)
np!= factorial of np

np=  number of  points generated by the modular space frame.

     Generally, the uncertainty of length measurement can be defined as a linearized
curve, that is,
U=A+KL≤B                                                                                                                            (14)
where,
U = uncertainty of length measurement
A, K, B = constants to be determined
L = measured length
     As already mentioned, according to British Standard  (BS6808, part 2, 1987) the constants A,
K and B are supplied by CMM manufacturers. Thus, after determining the 3D error of length
measurement by using the method proposed in this research  the user can verify whether a CMM
meets the manufacturer specifications. The modular space frame can also be used by CMM
manufacturers when performing acceptance tests in order to establish the specifications of a
manufactured CMM.  British Standard 6808 (part 2, 1987)  does not define how to calculating the
constants A and K in equation 14. Thus, it is worth providing a criterion which can be applied by
manufacturers to define the values of those constants. In this research, a  method proposed by
Pakh and Burdekin (1991) to determine the constants A and K has been  followed. This method
provides two approaches to evaluate the slope K which are: least squares slope over all data  and
least squares slope over maximum error data (data of “envelope” points). The former is to
evaluate the least squares slope considering all the data in the error versus measured length  plot.
The latter is identical to the former except that it considers the maximum data (“envelope” point
data) at every measured length. In both cases, the constant A can be determined as the maximum
intercept by shifting the evaluated best fit line, so that the shifted straight line may contain all the
error data in the plot.
     A computer program, which is described by (Silva, 1997), has been developed in order to
calculated the error of length measurement (∆L) and the constants A and K of equation 14.
Figures 3 and 4 show the 3D uncertainty of length measurement  plotted against the measured
distances, related to the  LK CMM on which the  modular space frame has been applied. The
curve of uncertainty of length measurement shown in  figures 3 and 4 was calculated following
the method proposed by Pahk and Burdekin (1991) and are  given as follows:
     - Considering all data points (figure 8).
       U= ±(5.8 + 0.0173 L)                                                                                                       (15)
     - Considering the maximum data or “envelope” data points (figure 9).
        U= ±(3.5 + 0.0335 L)                                                                                                      (16)
where,
L= measured distance, in millimetres, between any two points generated by the
      modular space frame.
U= 3D uncertainty of length measurement, in micrometers.
     From  figures 8 and 9 it can be seen that the slope, K,  calculated considering all data points is
smaller than the slope, K, calculated considering the maximum data or “envelope” data points.
However, the intercept, A, calculated considering all points is greater than the intercept, A,
calculated considering the maximum data or “envelope“ data points.



     The comparison of the above mentioned constants (A and K) with the manufacturer limits is
shown in figure 10. From this figure it can be seen that all errors of length measurement are
within the linearized curves defined by equation 15, which is U2=±(5.8+0.0173 L), and the
equation 16, which is U1=±(3.5+0.0335 L). However, there exist points that are outside of the
manufacturer tolerance limits, which is U3=±(2.5+0.0067 L). This indicates that the CMM is out
of the manufacturer specifications.

0 50 100 150 200 250 300 350 400
-15

-10

-5

0

5

10

15
 3D Uncertainty of Length Measurement

Measured Distances [mm]

E
rr

or
 [m

ic
ro

n]

 Air temp.=21 C        

   

Figure 8   Three-dimensional uncertainty of length measurement (LK CMM)
                                              U= ±(5.8 + 0.0173 L)
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Figure 9   Three-dimensional uncertainty of length measurement (LK CMM)
                                                   U= ± (3.5 + 0.0335 L)
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Figure 10   Three-dimensional uncertainty of length measurement (LK CMM)
                                              U1= ± (3.5 + 0.0335 L)
                                              U2= ± (5.8 + 0.0173 L)
                                              U3= ± (2.5 + 0.0067 L)

5.   CONCLUSIONS

       Primarily, this work had as objective to developed a new technique for
volumetric accuracy measurement and analysis of CMMs. The main
conclusions of this work can be outlined as follows:
       i) The modular space frame provides a practical and cost effective
mechanical artefact to determine the volumetric accuracy of small/medium
sized CMMs.
      ii)  Unlike most traditional mechanical artefacts, the modular space
frame can be easily handled, transport and stored. It is also lightweight
and is thermally stable.
      iii)  This technique developed in this research provides an efficient
approach for measurement and analysis of volumetric accuracy of CMMs.
      iv)  Once a CMM, under test, measures the calibrated modular space
frame and the volumetric error are obtained, both verification and calibration
of the CMM can be established.
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