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Abstract. At the present work the performance of three different low Reynolds number κ−ε
turbulence models, for the prediction of flows in the presence of separation and reattachment,
is investigated. The geometry of interest consist of a duct with curvilinear obstruction
described by a cosine curve. The objective of the analysis is to verify if the models selected
are capable of capturing the recirculation areas and pressure recovery after the obstruction,
fundamentals for the evaluation of the distribution of tensions. The fields of velocity, turbulent
kinetic energy and dissipation rate were obtained by the different models. Comparison with
numeric and experimental data found in the literature is performed, seeking to identify which
model is more adapted for those type of flows. The numeric determination of the fluid flows
was accomplished by a finite volume method with non-orthogonal curvilinear coordinates,
which adapts to the geometry. The countervariants velocity components were employed as
independent variables in the momentum conservation equation and the velocity-pressure
coupling was solved by the SIMPLEC algorithm. Among all tested models, none was able to
reproduce exactly the experimental data. Satisfactory mean velocity and pressure distribution
were obtained, however, poor results were encountered for the turbulent quantities.
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1. INTRODUCTION

Flow field in curvilinear obstructions is often found in engineering as well as biomedical
applications. An example that can be mentioned is the presence of weld joints in small
diameter ducts which causes localized corrosion after the restriction. In general, for
engineering situations, the flow is in the turbulent regime. The prediction of the pressure
recovery and the shear distribution along the obstruction can help to design equipment to
avoid the corrosion. In the biomedical area, arteries obstruction is a mayor problems for the
circulatory system (Rastogi, 1984).

Numerical simulation of flow field has become an excellent tool to help develop projects
and process that are more efficient at a lower cost. For engineering applications, in general the



flow field is turbulent. Since turbulent flow is three dimensional and transient, the computing
effort to obtain directly the velocity and pressure field, especially in complex geometries, is
very high. An attractive alternative from the practical point of view is to employ turbulence
models to predict the time average variables of interest. Among the two equation differential
models available, the high Reynolds numbers κ−ε model is still the model more widely used
to solve practical engineering problems. The traditional κ-ε model has been significantly
enhanced to be applied to the whole domain, i.e, in the near wall region as well as in the
turbulent core. These models are called low Reynolds number κ-ε models (LRN), since they
can predict the flow behavior near the walls, where the Reynolds number is low. Along the
last decades, several works have been published, with different variants of the model. Just a
few of them are referred here: Jones and Launder, 1972, Patel and Rodi, (1985), Koobus
(1994), Geronimos and So (1997) and Chen et al. (1998).

The main objective of the present work is to analyze the performance of different low
Reynolds number κ−ε  models to predict the flow field in ducts with obstruction. After a vast
literature survey, three models were selected to be presented here. The models selected were
developed by Hanjalic and Launder (1980), Abe, Kondoh and Nagano (1994) and Sarkar e So
(1997).

2. ANALYSIS

The geometry selected to be analyzed at the present work consists of a duct with circular
cross-section, with a curvilinear obstruction as illustrated in Fig. 1. The obstruction is defined
by a stenosis type of curve, described by the following expression
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where Rc is the duct radius, Ro the unobstructed duct radius, δ is restriction height, x is the
axial coordinate and xo is the restriction half length. The dimensionless parameters that
characterized the obstruction were set as xo/Ro  = 2 and δ/Ro = 0.5. This configuration was
experimentally investigated by Deshpande e Giddens, 1980. Numerical investigation based on
the standard κ−ε model has also been performed for this configuration by Rastogi (1984),
Melaaen (1992) e Zijlema et al. (1995). The length of the straight duct upstream and
downstream the obstruction were set at xup/Ro = 2, and xdn/Ro = 14.

To obtain the flow field in a horizontal axi-symmetric duct, the following hypotheses
were made: Newtonian fluid, constant properties and steady state regime. The average
continuity and momentum equations, can be written as:
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Figure 1- Duct with curvilinear obstruction.
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where uj are the velocity components, xj the coordinate directions, µ and µt are the absolute
and turbulent viscosity, ρ is the density and P is a modified pressure [ κρ)3/2(+= pP ],

where κ is the turbulent kinetic energy.
After an extensive search through the specialized literature, three models were selected

based on their ability to represent the flow near the wall. The models selected are SSA,
developed by Sarkar e So, (1997), NT of Abe, Kondoh and Nagano (1994) and LSH
developed by Launder and Sharma and modified by Hanjalic, (Hanjalic and Launder, 1980).
The κ−ε conservation equation for the three models can be represented by the following
equations, where ε̂  is a modified dissipation rate of κ.
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In the above equation, the turbulent viscosity is

ε
κρµ µµ ˆ

2
cft = (6)

and κP is the production of turbulent kinetic energy, given by
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The main differences among the models are the damping functions to represent the flow
near the walls and additional low Reynolds source terms in the κ and ε conservation
equations. Further, while SSA and NT solve for εε =ˆ , the LSH model solves for εε ~ˆ = ,
a pseudo dissipation rate of the turbulent kinetic energy ε~  defined as *εε − , where
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Consequently different boundary condition for ε̂  must be given. It is zero por LSH model,

and *
wallε  for the two others models. The NM model simplifies the expression to

)/(2)/(/2 2* 2 nnlwal ρκµκρµε ≈∂∂= , which is easier to evaluate. Table 1

summarizes the differences among the models.



Tabela 1. κ−ε  source and damping functions

SSA NT LSH

Lκ 0 0 ρ *ε

Lε exp[-(Ret/40)2]

[-0.57ρε ε~ /κ +

+0.5ρ(εwall
6)2/κ -

2.25Pκε/κ]

0
(Cε3 - Cε1) *
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[1+80exp(-Reε)]

[1-exp(-Reε/43-Reε
2/330)]2

[1-exp(-Reε/14)]2

[1+(5/Ret
3/4) {-(Ret/200)2}] exp[-3.4/(1+0.02Ret)

2]

f2 εε ˆ/~ [1-exp(-Reε/3.1)]2

[1-0.3exp{-(Ret/6.5)2}]

1-0,3 exp(-Ret
2)

The empirical constants are also slightly different for each model. For the SSA model,
they are: Cµ = 0.096; σκ =1.0; σε = 1.45; Cε1 = 1.05; Cε2 = 1.83; Cε3 = 0.0. For the NT model:
Cµ = 0.090; σκ = 1.4; σε = 1.40; Cε1 = 1.50; Cε2 = 1.90; Cε3 =0.0. And for the LSH model:
Cµ=0.090; σκ = 1.0; σε = 1.30; Cε1 = 1.44; Cε2 = 1.92; Cε3 =0.44.

Pκ* corresponds to the contribution to the production of κ due to only the normal shear
stresses. The damping functions are dependent on the following local Reynolds number,
related to local variables and the wall distance n.
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2.1 Boundary conditions

At the inlet, a fully developed velocity profile, uin, was specified in accordance with the
experimental data of Deshpande and Giddens 1980, as

( ) 4.6/1/125.1 omin Rruu −= (10)

where um is the mean velocity at the cross section. The boundary condition for the turbulent

quantity κ  was specified as 2/5.1 22
init uIin =κ , where Iit is the turbulence intensity,

defined as 3% in accordance with Melaaen (1992) and Zijlema et al, (1995). For the
dissipation rate, based on the recommendation of Shinha e Candler, (1998), the following
expression was adopted, )4/(2/34/3

inincin "κµε = , with ]1.0);([min oo RrRK −=" ,

where " is the mixing length is and K=0.4 is the von Kármán constant.
At the symmetry line, the normal velocity component was set equal to zero as well as the

normal gradient of all others variables. At the exit plane, the traditional boundary condition of
neglecting the diffusion flux of all variables was employed. At the solid surfaces, the non-slip
condition was enforced.



3. NUMERICAL METHOD

A non-orthogonal curvilinear system of coordinates, which adapts to the boundaries of
the domain, was employed. This is an important technique, which allows an easy and exact
representation of the boundary conditions, making it possible to solve turbulent flow field in
complex geometries. The conservation equations are discretized with the aid of the finite
volume method described in Patankar (1980), using the power-law scheme. Staggered
velocity components were used to avoid unrealistic pressure fields, and the contra-variant
velocity component was selected as the dependent variable in the momentum conservation
equations (Pires and Nieckele, 1994). The pressure-velocity coupling was solved by an
algorithm based on SIMPLEC  (van Doormaal and Raithby, 1984). The resulting algebraic
system was solved via the TDMA line-by-line algorithm (Patankar, 1980) with the block
correction algorithm (Settari and Aziz, 1973) to increase the convergence rate.

To define the mesh size a grid test was performed, where different mesh sizes and
distribution were investigated. Finally, a non-uniform 115 x 60 points mesh was specified to
analyze the numerical prediction of the three turbulence models. The grid points were
concentrated near the solid wall and the obstruction region. The mesh was generated by the
commercial software FLUENT (FLUENT, Inc.V 4.4, 1996).

4. RESULTS

The present problem is governed by the several geometric parameters presented and by
the Reynolds number defined as µρ /2 om RuRe = . For the present work, the Reynolds

number was set equal to 15 000.
To evaluate the turbulence models selected, the velocity, pressure and turbulence

quantities fields were compared with experimental data of Desphande and Giddens (1980),
and the numerical results of Rastogi (1984) and Melaaen (1992), both based on the traditional
κ−ε   model.

Rastogi (1984) solution was obtained with a 41 x 21 mesh with an orthogonal coordinate
system. It was based on the hybrid scheme, with the covariant velocity components as the
dependent variable in the momentum equations. Melaaen (1992) solution was obtained with a
non-orthogonal coordinate system, with colocated cartesian velocity as the dependent
variable, with a mesh size of 52 x 22 nodal points. Melaaen (1992) investigated two
interpolation schemes. The first one, based on the power-law scheme, is not presented here,
because the results obtained were slightly worse than the ones obtained by Rastogi (1984)
with an equivalent interpolation scheme. The second case, selected to be compared here,
employed a second order upwind interpolation scheme for the velocities and the power-law
scheme for the turbulent quantities. The same geometry was also investigated with the
traditional κ−ε model by Zijlema et al, (1995). However, very poor results were obtained and
their results will not be presented here.

4.1 Pressure and velocity distribution

To analyze the pressure prediction along the wall, a pressure coefficient was defined
based on the inlet pressure pin and mean velocity um as
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−
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The pressure distribution along the pipe wall is presented at Fig. 2. It can be seen that all
schemes present a similar behavior in the upstream and convergent section of the duct. All



schemes super-estimate the minimum pressure, which occurs at the center of the obstruction
(x/Ro = 4). At the divergent section and at the downstream portion of the duct through the exit
(4 < x/Ro  < 20), only the LHS model is able to satisfactory reproduce the smooth pressure
recovery, presenting good agreement with experimental data. The SSA and NT models cannot
capture this behavior. Their predictions are equivalent and similar to the results obtained by
Rastogi (1984) with the traditional κ−ε model. Pressure is super-estimate after the
obstruction. The pressure distribution obtained with the higher order scheme of Melaaen
(1992), with the traditional κ−ε model, is similar to the results of LSH, however the pressure
after the obstruction is still higher than the experimental data.

Figure 3 illustrates the dimensionless centerline velocity distribution. Again, the same
behavior is observed for all models at the convergent section, and the maximum velocity is
under estimated by all models. It is 6% lower for the SSA and NT low Reynolds κ−ε  models,
as well as for the traditional κ−ε  models and 4% lower for the LSH model. Although the LSH
underestimates the maximum velocity, it is capable of capturing the flow desacceleration at
the divergent region, up to the section x/Ro = 6, since an excellent agreement with the
experimental data is observed. After the end of the obstruction, x/Ro = 8, it can be seen from
the experimental data, a fast velocity recovery to its initial value at x/Ro = 14. The LSH model
does not predict this desacceleration. It is only at x/Ro = 10.5 that a strong desaccelaration is
observed. The SSA and NT models present equivalent results with a strong desacceleration
immediately after the end of the obstruction, and a slower velocity recovery than the other
methods. The higher order method presents a velocity distribution analogous to the LSH
model, however its velocity recovery is premature.

Figure 4 illustrates the streamlines obtained with the three low Reynolds number κ−ε
models, where a recirculation region can be easily seen. The same levels were selected for all
cases. The isolines were uniformly distributed inside and outside the recirculation region.
LSH model predicts a much larger recirculation region than other models, with its center
located near the end of the obstruction (x/Ro = 6). Again, the results obtained with the SSA
and NT models are equivalent.

4.2 Friction factor and reattachment point

Although the streamline distribution allows us to identify the recirculation region, the
friction factor distribution along the wall helps us to precisely determine its size.
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The friction factor, or dimensionless wall shear stress, τs, can be defined as

25.0 m

s
f

u
C

ρ
τ= (12)

The friction factor distribution along the wall is shown in Figure 5 for the three models
selected. These values were not available for the traditional κ−ε  model, and they will not be
presented here. It can be seen in Fig. 5, that the shear stress increases at the convergent region
of the duct, reaching a maximum value at the center of the obstruction, with a very sharp drop
right after it. The separation point is clearly identified as the position where the shear stress is
zero. After this point, the shear stress becomes negative indicating the recirculation region. As
already seen by the streamlines distribution, NT and SSA models, present a small
recirculation region, with a reattachment point approximately equal to 6 Ro. As the others
models, LSH model presents an increase of the shear stress after the separation point.
However, near the end of the obstruction region, close to the center of the recirculation, where
the reverse flow is stronger, a decrease in the shear stress is observed. After which, the shear
increases again. Consequently, the reattachment point is moved downstream (x/Ro ≈ 9).

(a) NT model

(b) SSA model

(c) LSH model
Figure 4 – Streamline distribution
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Table 2 presents a comparison of the separation and reattachment points, xs and xr,,
predicted by the three low Reynolds number κ−ε  models and the results of Rastogi (1984)
and Melaane (1992) obtained with the traditional κ−ε models. The experimental results of
Desphane and Giddens (1980) are also shown at the table. Since different mesh sizes were
employed by each author, this information is also presented at Table 2. The downstream
length, xdn,  was not informed at the experimental work, but it is known that this is a critical
parameter for the numerical simulation because of the zero diffusion flux boundary condition
employed, so this information is also provided at Table 2.

By examining Table 2, it can be seen that the higher order scheme with the traditional
κ−ε model (Melaaen, 1992) presented the best agreement with experimental data, for both
separation and reattachment points. Since the number of grid points employed by Melaaen
(1992) was smaller, the low Reynolds κ−ε  models were also solved with a smaller mesh size,
equivalent to the Melaaen’s work. It can be seen that greater discrepancies with the
experimental data is obtained with the NT and SSA models when the mesh size is made
smaller. The LSH model under predicts the separation and reattachment points for the course
mesh and over predicts it for the fine mesh. The worse result was predicted by Rastogi (1984),
however, they are not very different than the ones predicted by the NT and SSA models.

4.3 Turbulence quantities

The only turbulence quantity available in the literature to allow a comparison with the
present results is the turbulent kinetic energy. Figure 6 present its dimensionless distribution,
κ/um

2, along the centerline. It can be seen that the agreement of the different numerical and
turbulent models with experimental data is not satisfactory. The experimental data show an
approximately constant κ up to the section of maximum obstruction. Along the region where
pressure is recovered, there is a substantial increase of κ, followed by a strong decrease. The
resulting profile is almost symmetric. The section where κ starts to fall corresponds to the
section where pressure has reached its downstream level, as can be seen in Fig. 2.

All models presented a sharp increase of κ along the centerline followed by its reduction,
however, the section where the maximum occurs, as well as the maximum value are quite
different for each case. Note that the maximum κ always corresponds to the point where
pressure has reach a constant value. This behavior can also be observed by the experimental
data. Rastogi (1980) presents the greater discrepancies with the experimental data. Melaaen
(1992) results have two picks of κ. The first one over estimates κ , while the second one is
quite close to the experimental data, as well as to the LSH model results. The LSH model is
not able to reproduce the increase in κ at the obstruction region. It presents a sharp increase of
κ, right after the reattachment point. To understand the results obtained, isocurves of turbulent

Table 2 – Separation and reattachment points
Model Mesh xdn/Ro xs/Ro xr/Ro

Desphande e Giddens, 1980 (experimental) ≈4,4-4,5 8,0
Rastogi, 1980 41 x 21 11 5,2 6,4
Melaaen, 1992 52 x 22 12 4,56 8,07
NT 110 x 60 14 4,35 6,33
NT 57 x 22 14 4,64 6,79
SSA 110 x 60 14 4,41 6,65
SSA 57 x 22 14 4,65 7,60
LSH 110 x 60 14 4,23 8,92
LSH 57 x 22 14 4,63 7,81



kinetic energy are presented at Fig. 7 for the three low Reynolds number κ−ε models. The
same isolines uniformly spaced were selected. Again, the predictions of the NT and SSA
models are similar. Low κ values are seen by the dark color near the entrance. The turbulent
kinetic energy begins increases at the obstruction, as one can see the colors getting lighter.
Then it reaches a maximum value at the recirculation region, when a new dark color appears.
The kinetic energy is generated near the wall and then it is convected throughout the domain.
The recirculation region predicted by the LSH model is much larger than the other models,
and its center of rotation is displaced downstream, as a consequence the maximum turbulent
kinetic energy generation also occurs displaced to downstream. The high value generated are
then convected, and the increase in κ at the centerline is only seen at section x/Ro = 12.

5. Conclusion

At the present work the ability of three low Reynolds number κ−ε models to predict
turbulent flow in duct with smooth obstruction was examined. It was verified that although
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(a) NT model

(b) SSA model
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Figure 7 – Turbulent kinetic energy distribution



the velocity and pressure distributions were reasonable predicted by the different models, all
of them fail to predict correctly the turbulent quantities. The LSH model presented the best
agreement with experimental data. However, the higher order interpolation scheme with the
traditional κ−ε model, also predicted good results. The SSA and NT models are not adequate
to predict separation along smooth surfaces, because the low Reynolds models are more
expensive and harder to converge and these models presented results equivalent to cheaper
and easier to implement traditional κ−ε  models. It seems that a combination of a higher order
scheme and the LSH model should be investigated.
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