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Abstract. This work proposes a new method of dynamical control systems
implementation using the Cerebellar Model Articulation Controller (CMAC)
neural network as part of a variable structure system. CMAC is a neural
network easily implemented in hardware, quite efficient in the reproduction of
multivariable functions and extremely fast in its training process. These
features yield CMAC applications in robust multivariable on line control in the
presence of uncertainties in plant model. Variable Structure Systems (VSS)
theory yields the concatenation of at least two, possibly unstable, dynamical
structures, in order to realize a low cost controller that guarantees robustness
with respect to nonidealities in the control system. This is done by a deliberate
introduction of a special behavior named sliding mode where the state of the
plant is confined to a subspace determined by the eigenvalues of the desired
resultant dynamics until the origin is reached. Further, if the system model
equations are written in a particular regular form and complete access to
states is guaranteed for any time, the CMAC network in a variable structure
system collects information enough about plant dynamics for the closed loop
eigenvalues be allocated on line with no previous knowledge of plant model
other than its order and structure. Furthermore, if the supposed unknown plant
parameters change due to environment interaction, the resultant dynamics is
invariant.

Keywords: CMAC, Variable structure systems, Sliding mode control.
1. INTRODUCTION

The actual growth of works on variable structure control systems with



sliding mode (Ackermann & Utkin, 1998) is due to their quasi invariance
property to parameter disturbances (Chen & Chang, 1996), to the extension to
the multivariable control problems and to the attractive simplicity of the relay
type control usually applied to the plant. The variable structure control
systems can reach desired dynamic behavior and show stability certainty as a
feature but, usually, the knowledge of the linear system model matrices A and
B is a need for sliding mode controller design, (Furuta, 1990) and (lordanou
& Surgenor 1997). This article proposes a method for variable structure
control of partially known and/or uncertain dynamical systems where a CMAC
neural network approximates a quantity depending on the system state and on
the system parameter structure. The experimental results show that the
approximation obtained is accurated enough to yield the system state to reach
the discontinuity surface where it evolves in sliding mode to the origin.

2. CEREBELLAR MODEL ARTICULATION CONTROLLER - CMAC

Since its conception in the mid-seventies (Albus, 1975), the Cerebellar
Model Articulation Controller (CMAC) has been used in on line nonlinear
control systems, including robotics and chemical processes (Brown & Harris,
1994). Also, applications in reinforcement learning control, state estimation
(Wang, Brown & Harris, 1994), digital filtering and color calibration hardware
realization (Ker, Kuo & Wen, 1997) are reported. CMAC approximates
multivariable functions over a compact domain of interest only (Ker, Kuo &
Wen, 1997), and in order to improve accuracy, higher order basis functions
than the binary one can be used. Memory requirements is a critical issue in
using CMAC due to its exponential growth with accuracy requirements
(Bordon, 1995). Albus (1975) suggested hashing code to randomly attribute
one weight to many association cells.Teixeira & Bordon(1995) used discrete
in value weights to reduce the memory needs in function approximation.

The CMAC output, (Hirashima & liguni, 1997) and (Tolle & Ersl, 1992),
is the sum of p, weights, where p is a positive integer, chosen from a set
with N weights, N >> p, by quantization functions applied to the set of
inputs, X, where X is a compact set of R”. Each quantization function
determines a weight associated with one interval of the partition in X that
contains the input vector to the CMAC. In all, p, quantizations are made and
there exists an overlapping of !/p of an interval in each coordinate axis. In
Fig.1, the set X < R? is partitioned by p = 2 quantization functions. The first
one associates one weight to each interval in the set { Aa, Ab, Ba, Bb }. The
other weight is associated with one of the intervals { Cc, Cd, Dc, Dd } of the
second quantization function. The CMAC output is defined in Eq.(1):

F= Y w, M

i=1

where w, are the weights chosen by the quantization functions for some
x € X. For two input vectors x;, and x, sharing weights determined by the
quantization functions, the corresponding outputs 7, and 7, are similar, and,
in this context, p is a measure of the generalization inherent to the CMAC.



We define the learning rule for CMAC in Eq.(2):

w(k+1) =w(k) + Aw(k),
Aw(k)=%(r—f(k)), )

r is the desired value for the output 7 associated to some x € X, w(k) are
the weights whose summation results in #(k) and B is a positive constant.
Usually B € (0, 11.

3. VARIABLE STRUCTURE SYSTEMS
This section collects some aspects of Variable Structure Systems (VSS)
Theory for multivariable linear systems that lead to a nice fusion between

sliding mode control and CMAC based on line training control. Let § be the
null space of a linear transformation GeR™*", defined by

S={xeR"| s(x) =Gx =0 }. 3)

S is the intersection of m surfaces inR*” and, in multivariable VSS
control, it is called sliding subspace (Utkin, 1992).

A X,

c d
Figure 1: Structure of a two input CMAC.




Let the time invariant multivariable linear system written in a particular
regular form be:

X = Ax + Bu

4)

xeR”, ueR™.

We suppose that the state is accessible but the matrix A is not completely
known. Let's consider the following partitioning of matrix A and B:

A = A11 A12 ;
A21 A22 (5)
Bl

B = , B =0
B2

where B, is an identity matrix and the eigenvalues of A are due only to A,
and A,, (A, and A, could represent a priori known relations about state
variables).

Let the discontinuous control law be:

. - {u,. x, 1), s(x)>0 ©

w (x,t), s(x)<0’

where s,(x) isthe i ™ component of the vector s(x) and u*(x,¢) and u~(x,?)
are continuous functions with respect to x and ¢.

The procedure for stabilizing this system may be divided in two phases
(Utkin, 1978):
- to yield the state, initially equal to x,, to a subspace S € R" in the state
space called sliding subspace:

S={xeR*|s=Gx =01}, (7)

where G is a matrix of R™*" chosen accordingly to desired conditions for the
dynamic behavior during the next phase;
- to keep the system state in a sliding domain of the discontinuity surface
where a fast switching process, named sliding mode, is established due to
discontinuous control law (6).

The system state remains in sliding mode in the subspace S € R” if there
exists a function E(s,x,t) satisfying the following conditions, (Utkin, 1978)
and (Utkin, 1992):



E(s,x,t) >0
E(s,x,t) < 0

E0,x,t) = 0.

}Vsl s # 0, Vx, Vt,
(8)

Once the state reaches the sliding subspace § € R" and remains on it, with
a switching frequency as high as desired, the resultant dynamics becomes
independent of the plant parameters and depends only on G. So, if the sliding
mode is established and the control system parameters satisfy the existence
conditions for sliding, the closed loop dynamics is independent of the
parameters of the plant.

Let a standard quadratic Lyapunov function be

E(s,x,t) = %sTs. 9)

Consider the matrix G is partitioned as in Eq.(10)

G=[G G, ], G,=1 (10)

where I stands for the identity matrix. When the sliding regime is established,
we have s = 0 and

§ = G = GAx + GBu =0, (11)

in addition, the sliding mode for the system (3) in a neighborhood of the
subspace S < R” exists if:

u; (x,t) < -g,Ax

_ (12)
u, (x,t) > -g,Ax

where g, is the i " row of matrix G.

Discrete Sliding Mode. Unlike the continuous time VSS, where changes
in the structure due to switching may occur at any instant, in a computer
controlled system, a quasi-sliding regime appears due to switching changes
only at sampling instants. An alternative approach to approximate the sliding
regime that occur in a digital control procedure to the ideal case is increasing
sampling frequency; see in Furuta, (1990). In this way, the structure changing
delay will be limited to the sampling period.

On an ideal sliding situation, the switching frequency tends to infinity and
apparently the state remains on the subspace S. Equivalent control method



(Utkin, 1978) may then be applied to study the properties of the continuous
resultant dynamics. But in a real sliding situation, the state moves in a finite
neighborhood of the subspace § € R” and, so,

s(x) =Gx =¥, Iyl € (O, A]cR. (13)

Utkin (1978) showed that, for a certain class of systems, the real sliding
occurs in a neighborhood close to the trajectory described by the ideal sliding.

4. ALGORITHM DESCRIPTION AND RESULTS

The proposed controller was applied in the stabilization of a partially
unknown plant, with access to all states, and given by

% 010 x, 00
X | =] x x x X% |+|10 Zl (14)
X, X X X X3 01 2

Figure 2 shows the proposed controller performance. In this work, p = 4,
each partition divides the coordinate axes in 30 intervals, p = 0.90, and the
CMAC istrained at each A = 10ms . Figure 3 and 4 show the control law and
the value of s(x) during simulation. The simulated time was 10s and values
of k, taken in the interval [ 5, 10 | showed to be satisfactory. The CMAC
used in this application has three inputs related to the components of the
vector x which represents the state of the system. The control law employed
is defined by

u(x, t) = -7 - ksign(s)| x| (15)
where k is a diagonal matrix and

Ty

. F= [fz ] : (16)
CMAC output and training are given by:

F= f: w, (17)

i=1

sign(s,)

sign(s) = sign(s,)

Aw=%(GR—u—r~), (18)
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Figure 2: State paths for the plant reaching origin. (a) x, x¢, (b) x,%¢ and (c) x;*¢.

whereG is a matrix chosen accordingly to desired dynamic properties for the
closed loop system; R is an approximation to x obtained by digital
differentiation, for example; k is a diagonal matrix that controls the sliding
robustness. Supposing the state is far away the origin, the quantity k|x|
guarantees the validity of the existence conditions (12) if 7 is not close
enough to r = GAx. Initially, the state is far away the origin, the CMAC



output is not adjusted to yield the state in the sliding surface direction and the
norm of s = Gx may increase. At the end of some learning iterations, 7
approximates GAx, the neighborhood that contains the state becomes a sliding
domain, for the existence conditions are now verified, and the sliding starts
at the first crossing of the discontinuity surface. According to existence
conditions, to yield the sliding mode, the control law (6) must be such that
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Figure 3: Control signals during simulation. (a) u,*# and (b) u,* %

u; < - gAx

B} , 19

u, > -gAx (19
and, in this application,

ui+ = - f,‘ - k,','"x" 20)

- f,‘ + k,','"x"

As the CMAC output, 7, isintended to imitate GAx, if |7 - gAx| <k|x|
the existence conditions for sliding are satisfied and the robustness is
guaranteed.
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Figure 4: Evolution of the variable s(f) over time. (a) s,*¢ and (b) s,*¢.

5. CONCLUSIONS

A procedure for neural-sliding controller realization with CMAC and VSS
is proposed. Due to robustness properties of sliding mode behavior, this
approach yields the stabilization of the controlled process to a quasi-invariant
regime, and this is done with a chattering free control action in the
stabilization point due to nonlinear state feedback employed. For a measure of
the tolerance of the controller to variations in plant parameters it is necessary
a deeper theoretical study. Further studies include discrete time systems
analysis which yields lower switching/sampling frequencies.
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