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Abstract. In this paper a new approach based on a continuum damage model aiming to

detect and locatestructural damage is pr esented. The algorithm takes into consideration

that the available spectr alinformation is partial, i.e., considers as entries some measured

modes containing only a set of measured degrees of freedom. The pr oblem's formulation

is such that the original physical con�guration of the analytical model, connectivity and

sparsity, is pr eserved, which plays an important role in damage identi�cation. Some ex-

amples apllied to Kabe's problem (Kabe, 1985) are pr esented and the results are compar ed

with the results obtained by Zimmerman & Kaouk (1992) to the same pr oblem.
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1. INTRODUCTION

It is needless to emphasize the importance of damage detection techniques and health

monitoring in aeroespace, civil and mechanical engineering. It is essential to determine the

safety and reliability of their systems and mechanical structures. Based on experimental

modal analysis andsignal processing tec hniques, monitoring and interpreting changes on

structural dynamic measurements can be considered as a quite promissing approach for

damage identi�cation and health monitoring of mechanical structures. The main idea

is to reconcile analytical modal parameters of �nite element models of structures with

the modal parameters identi�ed from a dynamic test. The question applied to damage

detection can be formulated as follows: is it achievable to identify the existence, to locate

and to determine the severit y of damage using the discrepancy between the original �nite

element model (FEM) parameters and post-damage test measured dynamic parameters?
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Most prior work on damage detection of structures is focused on the general frame-

work of FEM updating methods. This technique is intended to re�ne and validate FEM

structural models before they are considered as quite accurate models of the structure

(Baruch & Bar, 1978). There are several recent review articles (Ibrahim & Saafan,1987;

Motterhead & Friswell,1993; Doebling et al.,1996) that show the great interest in model

updating, model correction and health monitoring. Optimal matrix update methods

which seek to determine the system property matrices, such as the sti�ness matrix, us-

ing measured data have been used extensively in FEM re�nement and damage detection.

Baruch & Bar (1978) obtained a closed-form solution to the minumum Frobenius norm

adjustment to the mass-weighted structural sti�ness matrix that takes into consideration

the frequencies and the mode shapes. An inherent drawback associated with these meth-

ods is the fact that the zero/nonzero sparsity pattern of the original sti�ness matrix may

be destroyed, what migth be followed by no physical meaning results. Aiming to pre-

serving the original sti�ness matrix pattern, some algorithms were proposed (Kabe, 1985;

Kammer,1998; Smith & Beatie,1993; Smith,1992), keeping the load paths the same as

the original model's. Farhat & Hemez (1993) presented a methodology based on element-

by-element sensitivity for updating the �nite element dynamic models. The updating

algorithm is obtained through minimization of the squared norms of the modal dynamic

residuals assuming that the variables to be corrected are structural parameters such as

Young modulus E, Poisson ratio �, cross-sectional area A and so on.

A new approach for damage identi�cation based on �nite element model update is

presented based on a continuum damage model: Continuum Damage Identi�cation Ap-

proach (CDIA). The approach builds on a constrained minimization of dynamic residuals

and utilises a mode shape projection to match the dimension of the experimental and FEM

models. The connectivity and sparsity of the original model are naturally preserved.

The remainder of the paper is organized as follows. Section 2 presents the theoretical

development of the CDIA as well as the mode shape projection algorithm followed by

a parameter selection procedure. Finally, Section 3 presents numerical illustrations to

assess the main characteristics of CDIA and the results are compared with those obtained

by the Eingenstructure Assignment Algorithm (Zimmerman & KaouK, 1992) to the same

problem under the same conditions.

2. THEORETICAL BASIS

2.1. Basic equations

One can summarize the present nondestructive damage detection procedure by three

main steps : modal testing, location of potential damage regions and the parameters

associated with them, and assessment of severity of damage.

Consider an undamped n-DOF �nite element model of an undamaged structure rep-

resented by the general equation of motion

[M]�u+ [K]u = 0 (1)

where [M] and [K] are the nxn analytical mass and sti�ness matrices, respectively, u is

an nx1 displacement vector, and (�) denotes the second derivative with respect to time.



The equation (1) leads to the following generalized eigenproblem

([K]� �i[M])�(i) = 0 (2)

Introducing the experimental modal parameters into the eigenproblem (2) yields to the

dynamic residue equation for each mode i, e.g.:

R(i) = ([K]� !
2
E;i[M])�

(i)
E (3)

where !E;i and �
(i)
E are the frequencies and mode shapes obtained from the experiment.

The nx1 vector R(i) contains information about the degrees of freedom which are most

likely inuenced by the damaged regions, and somehow, it contains information about the

severity of damage, which, in the present work, is described by means of a scalar variable

� 2 [0; 1] de�ned over the domain occupied by the elastic body. This variable is related

to the links among material points and can be interpreted as a measurement of the local

cohesion state of the material. If � = 1, all the links are preserved and the initial material

properties are preserved too. If � = 0 a local rupture is considered since all the links

among material points have been broken. The variable � is associated with the damage

variable D by the following relation: D = 1 � �. As the degradation is an irreversible

phenomenon, � varies with a negative rate. A detailed presentation of the basic principles

that govern the evolution of such kind of continuum damage can be found in Fermond &

Nedjar (1996), Mattos & Sampaio (1995) and Mattos, Domingues & Rochinha (1997).

Roughly speaking, � appears in the sti�ness matrix multiplying the elastic coe�cients.

For an original discrete model, like the one formed by masses and springs, this parameter

will lead to Kd = � K, where Kd and K are, respectively, the damaged and undamaged

sti�ness of the spring. For a �nite element model, the spatial parameter � will inuence

all the entries in the sti�ness matrix corresponding to the neighbourhood of the damaged

region. In other words, one could express the sti�ness matrix as follows

[K] = f (�(x); Ki) (4)

where x is a space coordinate vector and Ki are the sti�ness parameters of the structure.

As � is the interest variable now, we aim at updating the sti�ness matrix by �nding the

most suitable set of parameters �j that minimizes a global residue GR as follows

min
�

GR constrained by �(x) 2 [0; 1] (5)

where

GR =
pX

i=1

R(i)TR(i) (6)

where p is the number of modes, among the measured ones, chosen to be used for the

damage identi�cation process.

The constrained minimization problem presented above is solved by means of Newton

Method.



2.2. Mode shape projection

Unfortunately, the number of DOF at wich the mode shape is sampled from the test

is typically much smaller than the number of DOF in the FEM that de�nes [K] and [M].

Therefore, to apply Eq. (3), either the model must be reduced to the measured DOF

or the measured portion of the mode shape must be expanded to the dimension of the

analytical eigenvectors. So, in order to achieve the compatibility between the dimension

of the experimental and FEM models, the approach taken in the present work is to expand

the measured eigenvectors to the dimension of the analytical eigenvectors, using for this

the Orthogonal Procrustes Expansion (Zimmerman & Kaouk,1992) which searches for a

linear relationship between these measured and analytical eigenvectors

[�E] = [�a]P (7)

whereP is the Procrustes' Orthogonal Projection matrix, and the subscripts E and amean

experimental and analytical respectively. Partitioning the experimental and analytical

modal matrices into their measured and unmeasured partitions, the Eq. (7) can be written

as follows

"
�E;m

�E;o

#
=

"
�a;m

�a;o

#
P (8)

where the subscripts m and o mean measured and omitted DOF respectively. The pro-

jection matrix can be determined by the solution of the following problem

min
P

k�E;m � �a;mPkF subject to PTP = I (9)

where the subscript F means the Frobenius' norm. One should note that to determine

P it is required only the measured partition of the modal matrices. The Eq.(9) has well

known solution (Zimmerman & Kaouk,1992) given by

P = UV
T (10)

where U and V are the left and right matrices of the SVD decomposition (Golub & Van

Loan, 1983) of the matrix S de�ned by

S = �T
a;m�E;m = U�VT (11)

After obtaining the matrix P, the omitted partition of the experimental modal matrix is

given by

�E;o = �a;oP (12)

2.3. Parameter selection

Recalling the Eq.(3), the set of DOF which exhibits the largest values will be associ-

ated with the elements which have probably su�ered the damage e�ect, in other words,

the elements whose original elemental sti�ness of the model might be in error. Hence, it is



reasonable to select those parameters related to this set of DOF j, where the j-th compo-

nent of the dynamic residue exceeds some threshold level. This threshold may be de�ned

by a statistical procedure (Farhat & Hemez, 1993) or any other criterion, depending only

on the designer. Another interesting approach to select the DOF was proposed by Kaouk

and Zimmerman (1994), where each entry of the dynamic residue vector is de�ned as an

inner product of vectors. After selecting the DOF, the choice of the set of parameters to

be updated may be made through the conectivity matrix or by the feeling of the designer.

3. NUMERICAL ILLUSTRATION

The numerical example used in this work to assess the main characteristics of the

CDIA is a widely used spring-mass example known as Kabe's problem (Kabe, 1985). This

model includes 8 masses and 14 springs and a schematic representation of the structure is

depicted in Fig. 1. Table 1 lists the dimensionless sti�ness and mass values for the exact

model.

Figure 1: Kabes' problem.

Table 1: Dimensionless sti�ness and mass values for the exact model.

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14

1.5 10 100 100 100 10 2 1.5 1000 900 1000 1000 900 1000

m1 m2 m3 m4 m5 m6 m7 m8

0.001 1 1 1 1 1 1 0.002

This system has some particularities that make it a challenging test. It includes large

relative di�erences in the magnitudes of some of the elemental sti�ness coe�cients and

all the eight natural frequencies are within 27% of each other.

As the algorithm will be assessed for a damage identi�cation case, and the damage may

occur as a large local change, only one incorrect value of a connecting spring is introduced

in the original model to simulate the damaged system, rather than introducing incorrect

values in all of the connecting springs.



The mass and sti�ness matrix of the experiment model are formed using the exact mass

and sti�ness values. The matrices are then used to generate the complete set of ex-

perimental frequencies and mode shapes. The data for each simulation consist of an

exprimental modal set, which is taken to be a subset of the complete experimental modal

set, depending only on the choice of which modes will be used to update the model and

which DOF will be considered as measured. The rest of the mode shapes and frequencies

are considered to be unmeasured residual modes and frequencies.

In the �rst case, the undamaged sti�ness of the spring number 3 was 500 and it has

been changed in the damaged situation to 100, what, what, according to the de�nition of

beta, results in a damage variable D equals to 0.8. All the others springs kept the same

original values. It is also assumed that only the �rst mode of vibration is measured, but

all eigenvector components have been measured. Thus, no expansion of eigenvector is

required. The Fig. 2 shows the result obtained by applying the Eigenstructure Assigne-

ment Algorithm (SEA-SR)(Zimmerman & Kaouk, 1992) and the results obtained by the

CDIA. The x axis on the �rst 3 plots are the indices of a column vector constructed by

storing the upper triangular part of the sti�ness matrix in a column vector. The fourth

plot is the damage plot obtained by the CDIA, where the x axis contains the sti�ness

parameters (springs) and the y axis their damage values (D). This plot indicates which

spring is damaged as well as the extent of its damage. Both methods were capable of

identifying the damage, however, the SEA-SR does not specify which element is damaged,

once it only updates the global sti�ness matrix.

Figure 2: Results for the �rst case,where the �rst mode and all DOF are measured.

In the second case, for the same damage state, it is assumed that the �rst 3 modes have

been measured but only the �rst 3 components of the eigenvector have been measured.

So, an expansion process is necesssary, both SEA-SR and the CDIA were performed using

the Orthogonal Procrustes Expansion. The results are shown in the Fig. 3.



Figure 3: Results for the second case, where the �rst three modes and DOF are measured.

The solution achieved by the SEA-SR clearly gives an indication to both the location and

extent of damage, although it has spread little errors over a few elements. The CDIA

once again gives the indication of the location and the extent of the damage. The result

obtained by the CDIA using the �rst 2 modes rather than the �rst 3 is the same as shown

in Fig. 3 .

In the third case, the undamaged sti�ness of the spring number 5 was 200 and it

has been changed in the damaged to 100, what leads to a damage variable D equals to

0.5. It is assumed that only the �rst 3 modes of vibration and only DOFs 1,3 and 6 of

the eigenvector have been measured. The SEA-SR again gives a clear indication to the

location of damage, but is unable to predict its exact extent. As the foregoing cases, the

CDIA gives a quite clear indication of the location and extent of the damage, as shown

in Fig. 4.

Although it is not the focus of the work, it is worth verifying whether the proposed

approach may be utilised to adjust the original model, what is a di�erent task from damage

detection. The system chosen to be updated is the same of the foregoing examples, but

now most of the springs have had their sti�ness changed. For this purpose it is required

not to consider the constraint of the Eq.(5), due the fact that adjustment does not have

a commitment to achieve results with physical meaning. The results are compared to

the methods SER and KMA proposed by Arruda & Ver�cosa (1996) and by Kabe (1985)

respectively. The dimensionless exact and original model sti�ness for each spring are

shown in Table 2, as the results obtained by the di�erent approaches and methods when

the two �rst modes are used in the updating process.



Figure 4: Results for the third case, where the �rst three modes and DOF 1,3 and 6 are

measured.

Although the proposed approach has not been developed for model adjustment, the

results depicted in Table 2 show that CDIA was capable of adjusting all the parameters

exactly whereas the other 2 methods generated a few errors in some elements.



Table 2: Adjustment of the dimensionless parameters of the si�ness matrix of the Kabe's

problem.

Modes 1 and 2

Exact Original Model KMA SER CDIA

k1 1.5 2 1.5 1.5 1.5

k2 10 10 10 10 10

k3 100 200 100 100 100

k4 100 200 100 100 100

k5 100 200 100 100 100

k6 10 10 9 8.9 10

k7 2 4 3 3 2

k8 1.5 2 2.3 2.4 1.5

k9 1000 1500 1000 1000 1000

k10 900 450 900 900 900

k11 1000 1500 1001.2 1001.4 1000

k12 1000 1500 1000 1000 1000

k13 900 450 900 900 900

k14 1000 1500 1001.1 1001.2 1000

CONCLUDING REMARKS

An approach for detecting damage based on a continuum damage model and using partial

experimental modal parameters has been presented. It is built on a constrained minimiza-

tion of dynamic residuals and utilises a mode shape projection to match the dimension

of the experimental and FEM models. The approach has been assessed on the Kabe's

problem and it has been shown to be e�cient for estimating damaged parameters.
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