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Abstract.  Numerical investigations of pulsating laminar flow in a plane channel with sudden
expansion have been carried out by solving 2D Navier-Stokes and energy equation for an
incompressible fluid. Pulsation has been imposed on the axial velocity at the channel inlet.
Results show an asymmetry in the flow and for certain amplitudes of pulsation the average
wall Nusselt number can increase over the flow without pulsation.
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1. INTRODUCTION

Flow field in a channel with sudden expansion, see Fig. 1, generally contains separation
bubbles at the corner where heat transfer deteriorates.

Figure 1 - Schematic of the geometry and the chosen boundary conditions.



Imposition of temporal oscillation on the flow at the channel inlet can dislodge these
bubbles. Separation bubbles then should shed as transverse vortices with their axes parallel to
the spanwise direction and may thereby influence the heat transfer by periodically mixing and
sweeping the wall boundary layers. Pulsating laminar flow in a channel with uniform cross
section was first studied by Richardson & Tyler (1929) who found the velocity overshoot and
also backflow near the wall.

Siegel & Perlmutter (1962) found an overshoot in the temperature profile producing local
peaks in heat transfer in pulsating channel flow. However, Ma et al. (1994) found from
computational results in the Prandtl number (Pr) range of 100 and 12000 that average wall
heat transfer in a pulsatile flow is practically the same as in a steady flow in the channel.

The laminar flow in a channel with uniform cross section may not be much influenced by
pulsation. However, in a channel with sudden expansion one can expect substantial influence
of the pulsation on the flow structure.

Valencia & Hinojosa (1997) conducted numerical investigations of pulsating flow and
heat transfer characteristics downstream of a 2D backward-facing step. They reported that the
primary vortex breaks down through one pulsatile cycle for an amplitude of oscillation of one
and a Reynolds number Re of 100, referred to double upstream channel height, which causes
an approximately 9% higher time-averaged heat transfer rate than with steady flow. They
chose a sinusoidal variation of  parabolic velocity profile at the inlet.

Sobey (1985) investigated symmetric and asymmetric 2D channel expansions experimen-
tally and numerically. His work is focused on the effect of vortex waves, which are produced
by oscillations, on fluid flow. He discussed asymptotic analysis of wavelike structures in the
solution for steady flow through an asymmetric channel. It is argued that a vortex wave is a
result of shear-layer instability.

A different approach was done by Al-Haddad & Al-Binally (1989) who derived an
empirical correlation for prediction of heat transfer coefficient in a heating process for steady
and pulsating flow of air through a rigid circular pipe. They defined a new dimensionless
number composed of Re and dimensionless flow frequency. For critical numbers above

2.1x105 a significant heat transfer enhancement is observable.
The purpose of this work is to investigate numerically laminar flow and temperature

fields and to calculate heat transfer in a 2D channel with sudden expansion with an imposed
sinusoidal pulsation on the inlet axial velocity.

2. BASIC EQUATIONS AND METHOD OF SOLUTION

The channel as shown in Fig. 1 has an 1:2 sudden expansion. The flow field is described
by the 2D unsteady continuity, Navier-Stokes and energy equations in cartesian coordinates
for a Newtonian, incompressible medium with constant properties. The basic equations in
dimensionless form are
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The dissipation term in the energy equation, Eq. (3), is neglected, since the used Pr of the
fluid is fixed at 0.71, which corresponds to air at 1 bar and 20°C. The computations have been
performed using the nondimesionalized variables x=x*/H*, y=y*/H*, u=u*/u*s, v=v*/u*s,
p=(p*-p∞)/ρu*s

2, t=t*u*s/H*, T=(T*-T∞) /(Tw-T∞), Pr=µc/k and Re=ρu*sH*/�. The

dimensional variables are denoted by asterisks. Further, x and y are the axial and normal
coordinates, H* the width of the wider channel, u and v are the axial and radial velocity
components, u*s the reference inlet velocity, p the pressure, t the time, T the fluid temperature,
p∞ and T∞ are ambient pressure and temperature, Tw the wall temperature, µ the dynamic

viscosity, k the thermal conductivity, ρ the density, and c the specific heat of the fluid.
No-slip condition on the solid surfaces is used. For steady case, the inlet velocities are

u=1 and v=0. In case of pulsatile flow the radial velocity component is zero but the axial
velocity component is modified to

          ( )[ ]u u A St ts= + ⋅ ⋅ ⋅ ⋅1 2sin π                                                                                      (4)

where us is the velocity for steady case (us=1), A the amplitude of oscillation and St =

f*H*/u*s the Strouhal number which nondimensionalizes the frequency of pulsation f*.

Furthermore, the inlet fluid temperature is maintained at T∞=1 with or without pulsation, the

wall temperature T
W

 is 2.

The convective boundary conditions at the nominal outflow are:
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where ϑ  = u, v, T. The chosen ratio between the length and the height of the investigated
sudden expansion is L/H=12, and the length after the channel enlargement is 10 channel
heights, so that the recirculation zones after the sudden enlargement are sufficiently upstream
of the outlet.

The basic equations have been solved by a finite-volume procedure after SIMPLEC with
co-located grid arrangement and momentum interpolation. Central difference discretization
was used for the diffusive terms and flux-blending scheme was implemented for the
convective terms which approaches a second-order accuracy with progressing solution of
computation. The difference equations were solved by the strongly implicit procedure.
Computation of the Nusselt number on the upper wall of a backward-facing step showed that
grid independent results could be reached for ∆x=∆y=0.033, Fig. 2. The time increment
between two successive time steps was 0.01. Smaller time increment (t=0.005) did not give
any significantly different result. The convergence criterion was the equality of the inlet mass
flow and exit mass flow within 0.1%. The Computations were conducted on an IBM RISC
workstation.

For each time step n during computation the Nusselt number Nu and the friction
coefficient cf  are computed
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the wall shear stress. To have time integrated values of Nu and cf their values are

averaged over each time step.

Figure 2 – Grid independence test: time-averaged Nusselt number vs. x direction for the upper
wall of a backward-facing step.

3. RESULTS AND DISCUSSION

Figure 3 shows the axial velocity u against the time for the first almost 35 time units. The
fluid at the inlet of the sudden expansion has a Re of 100. The chosen point at which the u
velocity is detected is x=10.6 and y=0.5. This point lies in vicinity of the fluid outlet because
we wanted to check whether the unsteadiness at the inlet is transferred through the whole
geometry. Indeed, the effect of pulsation is remarkable through the sudden expansion, as seen
in Fig. 3.

The first 24.86 time units, we computed steady flow until convergence, and the converged
velocity u is 0.8. After imposing pulsation with St=1.0 and A=0.2 the velocity starts swinging
sinusoidally around this value, beginning with a period of transition of four peaks.
Observation of the time-dependent behavior of other parameters, like pressure p or radial
velocity component v, yields similar plots. Furthermore, the plot shows that the chosen
boundary conditions at the exit do not influence the imposed pulsation.



The vector plot in Fig. 4a shows a dynamic movement of the flow at every time
increment. This dynamic flow behavior fits well to the observations of Ma et al. (1994) for
sudden-expansion pipe flow. For ωt=0.2 and 0.4 the flow is fully directed from left to right.

Figure 3 - Course of u velocity at x=10.6 and y=0.5 during computational iteration for
ReH=100 - onset of pulsation after t=24.86 with St=1.0 and A=0.2.

Backflow in the vicinity of the walls can be observed through the whole geometry for
ωt=0.6 but the core flow goes on streaming towards exit. Later, the region of backflow
enlarges and even reaches the centerline.

The figure sequence illustrates that the recirculation bubbles at each side of the walls,
which can be observed in case of steady flow, shed during pulsation in one cycle, and
consequently, the boundary layers are washed out and rebuild themselves again.

In Fig. 4b isolines of temperature for ReH=400, A=0.6 and St=1.0 are plotted. In general,
the iso-temperature lines are symmetrical relating to the symmetry axis at y=0.5. The most
conspicuous changes are in the neighbourhood of the channel expansion. Near the walls, the
isolines have wave-like structures, while at the middle, concentrical constellations shine out.
The isolines do not change with time as dynamically as the flow pattern in Fig. 4a, which is
reported by Ma et al. (1994) as well.

Figure 5 presents the time-averaged Nusselt number nNu  against the contour-fitted wall
co-ordinate ζ for different amplitudes A and for ReH=100 and the Strouhal number St=1.0.
There are some small differences in the results of the upper and lower walls (lower wall
values have not been shown). However, some enhancement over the steady flow Nu (A=0)
can be observed.

Figure 6 shows the time-averaged Nu on the upper wall against the amplitude for
ReH=100. The behavior of Nu depends strongly on St and cannot be generalized.



  
a) b)

Figure 4 - Velocity plots (a) and isolines of temperature (b) during one cycle of pulsation in

the 10
th

 period for Re=400, A=0.6, St=1.0 and ωt=0.2, 0.4, 0.6, 0.8, 1.0.

Figure 5 - Time-averaged Nusselt number of 10th period vs. contour fitted wall co-ordinate ζ
for the upper wall in dependence of amplitude A (St=1.0, ReH=100).
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Figure 6 - Local and time-averaged Nusselt number vs. A for the upper wall with ReH=100 -
variation of Strouhal number St.

The results on the lower wall are nearly a mirror image of Fig. 6 and will not be
shown. We notice a sharp increase in Nu as the amplitude increases from 0.2 to 0.6 for the
case of St=1.0. The average Nu at A>0.4 are larger than that for steady flow.

4. CONCLUSION

The essential results are summarized here.
- Assumption of a symmetry line at y=0.5 is not realistic for pulsatile flow in a sudden
expansion with an area ratio of 1:2 and a Re range between 100 and 900.
- For certain amplitudes and St, the local and time-averaged Nu differs between the
lower and upper wall about 15% (lower wall values are not shown). For ReH=100, these

critical amplitudes decrease with increasing St. The discrete and systematic irregularities
denote strong asymmetries in the flow pattern.
- The highest global heat transfer enhancement through pulsation for ReH=100 is reached
with St=1.0 and A=0.8 with Nu=5.971 in comparison to 5.025 for steady flow which
corresponds to 18.8%.
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