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Abstract. The general problem of the three-dimensional non-adiabatic compressible
turbulent gas flow through constant circular pipes is analyzed. The integral forms of the
continuity, momentum and energy equations are employed near the state equation. The
dynamic framework is rounded with three cross section mediation theorems. We apply these
theorems to the flow equations and derive a system of three integro-differential equations..
The system derived is then transformed into an implicit system of four ordinary differential
equations, which involves only the cross section mean parameters of the turbulent-average
motion. We prove that the matrix inversion is always possible for subsonic flows. Finally, a
numeric example is performed.
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1. INTRODUCTION

The study of the gas flow through uniform section pipes has a great importance both
from practical and a theoretical viewpoint. The specialized literature in the domain deals with
the applied or theoretical aspects according to the aim taken into account. The applied studies
deal with the problem of the fluid-dynamic calculus, while the theoretical ones are centered
on the flow analysis. This paper belongs to the former classification.

The calculation methods developed up to now have a common denominator: two
simplifying hypotheses which reduce the problem of the fluid-dynamic calculus to the known
problem of the hydraulic calculation (Gluck, 1988).

a) The motion is assumed to be unidimensional.
b) The density is considered constant on sections of pipeline.
In this paper we shall leave these restrictive hypotheses aside. We shall deduce the

equations of the mean motion by taking into account both the radial and longitudinal
variations of the velocity and the continuous changing of the density along the pipe.

2. BASIC HYPOTHESES

Let us consider an infinite horizontal pipe of constant circular section. We shall refer to
the cylindrical coordinates (x r1, ,θ ), in which the axis Ox1 coincides with the pipe axis.

The motion hypotheses are the following:
(H1) The turbulent-average motion is stationary.



(H2) The motion is axis-symmetrical.
(H3) The pressure and density fluctuations ′p  and ′ρ are negligible.
(H4) The velocity field has the form:

u u u u u u u1 1 1 2 2 3 3= + = =~ , ,' ' ' (1)

where ~u1 -or u1 - denotes the turbulent-average value.

Under these hypotheses, the continuity equation applied to a control volume D  (Fig.1) is

~ ~ρ σ
∂

u n dj j
D

=∫ 0 (2)

We shall use further down the Einstein’s convention. The momentum equation on the
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Under hypothesis (H3), there results T’=0 and from here h’=0, where h is the specific
mass-enthalpy. On noting with q the unitary heat flux vector and neglecting radiation heat
transfer, the energy equation can be written as
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where Φd  is the Rayleigh dissipative function (Germain, 1973): Φd ij
V

ijT D= ⋅ , and v is the

specific mass-volume
The aim of the dynamic-gas calculation is the determination of the mean-cross section

parameters variation along the pipe. With this end in view, we shall reduce the tridimensional
motion to a quasi-unidimensional one. The equations (2), (3), and (4) will be brought to a
proper integro-differential form. For this, we consider the control volume D (Fig.1)

parametrized as ( ){ [ ] [ ] [ ] }D x r x x x x r R= ∈ + ∈ ∈1 1 1
0

1
0

1 0 0 2, , : , , , , ,θ θ π∆ . The boundary of

the control volume will be ∂D S x S S x xw= ∪ ∪ +( ) ( )1
0

1
0

1∆ . S x( )1
0  and S x x( )1

0
1+ ∆  are the

influx and efflux surfaces, respectively. The rigid boundary-surface of the pipe wall is
denoted with Sw.

The equations transformation method consists in their particularization for the control
volume D parametrized above and, in a second stage, on using the below mediation theorems,
bringing them to an integro-differential form from which will result a system of ordinary
differential equations in which only the cross-section mean flow parameters intervene.
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Figure 1 - The control volume D

3. MEDIATION THEOREMS

Theorem 1. If  f  is a function of C1 class, then
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Proof: Because f is a function of C1 class, we have
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We integrate on D; for the last integral we apply the integral-mediation theorem, the rest
α  being continuous. We arrive at
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We divide by ∆x1 . When ∆x1 0→  we obtain what had to be demonstrated.

Theorem II. If  f  is a function of  C1 class, then
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Proof: On particularizing (6), we can write
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Theorem III. If  f  is a function of  C1 class, then
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Proof: On parametrizing on Sw, we obtain
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On using again (6); for ∆x1 0→  it results what had to be demonstrated. If f is axis-symmetric,

then the integral from (8) becomes 2 1
0π ⋅ ⋅R f x R( , ).

Some methodological comments are useful. The integral-form flow equations lose
information. Because x1

0  and ∆x1 are arbitrary, equations (2), (3), and (4), particularized on

the control volume above parametrized, will lose only the information from the cross section.
Therefore, as a conclusion, we can state that: although they imply partial derivatives, the
mentioned equations have a unidimensional character, a character which, as we shall see, will
be kept and after the transformations undergone applying the mediation theorems.

4. THE INTEGRO-DIFFERENTIAL EQUATIONS OF MOTION

Let us particularize the continuity equation (2) to the control volume D defined in 2. On
using the result of Theorem 2, it results
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On taking into account that the fluctuation is cancelled at the wall, the application of
Theorems 2 and 3 leads to the following
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On denote with λ c the gas thermal conductivity in the well-known relation q x n t( , , )=
( )= − =q x n gradT nc( ), ( , )λ . The equation (4) becomes
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On applying the three mediation theorems and neglecting the conductivity λ c  variation, in
the hypothesis (H2), we obtain
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5. THE MEAN MOTION EQUATIONS.

If we take into account the parametrization ( ) [ ] [ ]{ }S x x r x x r R( ) , , : , , , ,1
0
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as well as the fact that x1
0  is a certain value, it results that for any cross section S(x1)
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The interpretation of equation (9’) is obvious, i.e., the mass flow rate m
•

 is constant
along the pipe.

In order to obtain an operational equation system, characteristic for engineering
applications, we introduce a supplementary hypothesis, justified by experimental researches
(Hinze, 1975; Reynolds, 1982):

(H5) The variations of the pressure ~p  and of the density ~ρ  in the cross section S are

negligible.
We introduce the mass mean velocity by the integral mediation of the 1-st order
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On applying the same mediation operation, it results ( ) ( )~ρ ρx x1 1=  and ( ) ( )~p x p x1 1= .

We replace in eq.(9) and take into account that ( )σ π(S )x R1
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We arrive at the following differential equation
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On using the same procedure, eq. (10) becomes
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We shall assume the usual interpretation (Hinze, 1975) 
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where λ is the Darcy coefficient and D is the inner diameter of the pipe. On using the
mediation operator introduced in a particularized way through (12) and taking again into
account (H5), we arrive at
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In a first approximation, we shall neglect the term in square brackets. On neglecting as
well the term that contains the variation with x1 of the Boussinesq coefficient, we obtain the
following equation

u
du

dx
v

dp

dx D

u⋅ = − −β λ
1 1

21

2
(15)

whose interpretation is as follows: the pressure variation along the pipe is due both to the
pressure losses and to gas acceleration (there is a cumulated effect of the pressure losses and
the gas acceleration). We have to note that these two processes are interdependent.

We shall introduce the cross-section mean enthalpy and, implicitly, the cross-section
mean temperature of the 2-nd order by an integral mediation of the 2-nd order
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On noting with Te the outer temperature and with KL  the global linear heat transfer

coefficient, we can write 2πR q i K Te Tr L( ) ( )= − .

We shall neglect in (11) the term containing λ c . This is equivalent with neglecting the
conductive transfer through the flux surfaces as against the heat transfer through the rigid
boundary (Sw). According to all these considerations and using again (H5) - as in the case of
(13) - eq. (11) becomes
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The significance of this equation is also obvious. The variation of the mean temperature
along the pipe is generated by three reasons: the gas expansion, the inner losses and the heat
transfer through the pipe wall.

Unlike the incompressible case, in the case of gas flow through the pipe there appears a
new dissipative factor, produced by the gas acceleration along the pipe. It is difficult to
estimate the accurate rate of this factor in the total dissipation. Because the velocity
longitudinal gradient is much smaller compared to the radial gradient, we can state that this

rate is insignificant. Therefore, we shall assume that 
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the longitudinal variation of the specific mass-heat capacity pc , eq. (17) will be written as:
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Equations (13), (15) and (18) make up a sub-abundant differential system which will be
necessarily completed with two equations. The first one is the state equation mediated

( )f p v T, , = 0 (19)

The second relation will have to make the connection between the 1-st order mean

temperature T  resulted from (19) and the 2-nd order mean temperature T . According to the

implications of hypothesis (H5) as well as the aim given at the beginning of the paper, we

shall consider that T T= .

6. THE CASE OF PERFECT GAS

We propose to study the system (13)+(15)+(18)+(19) for the case of perfect gases. We
shall choose as unknown values: the mean velocity u , the mean specific volume v  and the

mean pressure p .

According to (H5), ~p p=  and ~v v= . On applying the 1-st order mediation operation,

we obtain the mediate state equation p v R T⋅ = ⋅ . There results
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From (13), (15), (18), and (20), we obtain the implicit differential system
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To explicit the system, it is necessary that matrix A be non-singular. We have
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Equation (22) can be interpreted as a condition for sonic blocking. The sub-unitary
value is explained by the non-uniformity of the velocity field: the central areas get to the sonic
regime before the peripheral regions.

The motion regimes currently met in practice are many inferiors to the sonic regime. In
this case system (21) can be explicited, by multiplying (21) with A-1, as follows
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On adding the following
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we obtain an initial-value problem.
Because the implied functions are supposed to be of class C1, the local existence and

uniqueness of the solution for the problem (23)+ (24) are ensured.
Let us notice that the last eq. from (23) is not independent. If we rewrite it as
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t

, , , , , , , where [ ]f f f f fu p v T
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= , then ( )f vf pf RT p v= + / , as a

result of the state equation.

For M < −β 1 , system (23) can be integrated and studied numerically.

Let us perform a numerical example for a 0.2 m.-diameter non-isolated pipe of methane
gas (CH4). The initial values are u m s p bar T K0 0 010 10 29315= = =/ , , . . Dealing with the
equation system numerically is facilitated by the introduction of the dimensionless quantities:
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, where Eu and Ec are the Euler

and Eckert numbers respectively. The solution was obtained by using the fourth-order classic



multi-step method of the predictor-corrector type (Adams-Bashforth, Adams-Moulton). The
reference values adopted are U u V v T Eu= = = =0 0 0 1, , ,Θ . The coefficients β λ, , K L  were
considered as varying with x1 , and their values were computed separately for each sub-
interval of the integral division. The dimensionless step is h=0.2. The results are presented
graphically in Fig.2. αe is the external convection efficiency.
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Figure 2 - Numerical results
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7. OBSERVATIONS AND CONCLUSIONS.

1) It is often supposed that the gas motion is isothermal. We have to notice that this is a
supplementary hypothesis and there appears a compatibility problem between the energy
equation and this hypothesis. The numerical results are proving that this compatibility does
not exist. For the adiabatic motion (KL=0) the temperature decreases. For a non-adiabatic
motion, the temperature evolution will be strongly determined by the magnitude of the
external convection efficiency αe.

2) The system (23) has been obtained as a result of some approximations, by neglecting
the very small terms. Although for engineering computations the accuracy is more than
satisfactory, we can be tempted to increase the computation precision, thus getting closer to
the exact solution. This problem may be considered as being of successive approximations.
Thus, after solving the problem (23)+ (24) we shall determine in a first approximation the

values of some of the neglected terms, such as, for instance ( )µ µ2 1
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' ' , will be estimated on the basis of

the experimental data found in literature. Thus, we obtain the system in the second
approximation (Popescu, 1996), where the supplementary vector is due to the presence of the
terms neglected in the first approximation.

3) The theoretical study of saturated solutions is a difficult task for the general case. For
the adiabatic motions, or for T Te > 0 , is obvious that f f fu p v> < >0 0 0, , . One can prove

that the solution will develop a singularity after a finite length of pipe (“blow-up”). The
singularity appears when the condition of sonic blocking (22) is accomplished and it was
observed in all cases numerically investigated.

4) The method can be extended as well to the case of real gases and steam. In the case
of the perfect gas, the state equation can be solved algebraically. System (23) can be replaced
by a 3 equation system (Popescu, 1996). The state equation for real gases and steam,
especially near the saturation curve, has a very complicated form and it can not be solved
algebraically in an explicit form. Especially for this case, a qualitative analysis of the small
parameters influence on the solution is required. We will focus on this subject in a future
paper.
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