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SUMMARY. This paper focuses a H∞  robust controller design for a one-link flexible robotic
manipulator. The goal is to move the manipulator suppressing the vibration the motion
produces as well as those produced for external disturbances. This particular control problem
presents some characteristics which are critical for the closed-loop stability. The residual
dynamics, which is not represented in the plant model for controller design, is taken in
account in order to avoid stability (spillover) problems. The H∞  method is utilized in the
design to cope with these problems. Robustness is guaranteed including in the design a non-
structured uncertainty model, an upper bound to the residual part of the system. In this way,
the system is partitioned in the modal form and is represented as a model in the additive form.
The controller design specifications require the system to track a reference as well as to
suppress the bending due to the first mode, beside presenting robustness characteristics in
respect to the higher, non-modeled modes. The controller so obtained was simulated in order
to check for performance and robustness characteristics.
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1.        INTRODUCTION

The dynamic modeling and control of compliant mechanical structures is an important
research area, and is specially related to aeronautical and aerospace applications, and modern
robotics. In robotic research, the use of optimized structures made of light materials, and
actuated by low weight, small torque motors is a very attractive goal. On the other hand, such
a robotic structural design generally result in robot links with low mechanical rigidity, with a
large number of vibration modes and low structural damping. These dynamic characteristics
may degrade accuracy and adversely affect the actuation control system resulting in unstable
behavior.



This paper focuses a robust controller design for a one-link flexible robotic manipulator.
The goal is to move the manipulator suppressing the vibration the motion produces, as well as
those produced for external disturbances. This particular control problem presents some
characteristics which are critical for the closed-loop stability:

•  the plant is a distributed-parameter,  infinite-dimensional system;
•  the design of the controller is based on a finite-dimensional model;
•  the system is multivariable, with non-collocated sensors and actuators, i.e. they are not

collocated at the same points on the structure;
•  the actuator energy is limited.

Using a finite-dimensional model implies the truncation of the system dynamics. In
addition, for reducing the problem complexity and the controller order, a plant model
reduction is necessary. Thus, the residual dynamics (which is not represented in the plant
model for controller design) should be taken in account, in some way, in order to avoid
stability (spillover) problems (Inman, 1989; Berkman and Karnop, 1969). Non-collocated
sensors and actuators produces a non-minimum phase system (zeros in the right complex
semi-plane), which is a difficult aspect to deal, having a performance limitation impact
(Middleton, 1991).

The H∞ method is utilized in the design to cope with these problems. This method can
provide suitable robustness characteristics to the controller. The specific case of H∞  vibration
control is approached in Moreira e Arruda (1998), Moreira (1998), Moreira e Arruda (1999),
showing good results. The main aspect treated in these works is the inclusion of robustness
characteristics with respect to the residual dynamics of the structure, eliminating spillover.
Robustness is guaranteed including in the design a non-structured uncertainty model, an upper
bound for the residual part of the system. In this way the structure is partitioned in the modal
form and is represented as a model in the additive form.

This paper presents the dynamic modeling identification and the robust control system
design for a flexible slewing structure composed of a single flexible link, as shown in Figure
1. The controller design specifications requires the system to track a reference as well as to
suppress the bending due to the first mode, besides having robustness characteristics in
respect to the higher, non-modeled modes. The resulting controlled system is simulated to
check for performance and robustness characteristics.

Figure 1 - One link flexible manipulator.



2.        DYNAMIC MODEL OF THE PLANT

As illustrated in Figure 1, the system under consideration can be considered as a flexible
beam attached to a rotating motor shaft. A set of integro-differential equations describes the
coupled rigid-body and bending modes motion (Soares and Góes, 1993; Góes and Adade,
1999) of this system. Since the differential eigenvalue problem for this set of equations is
difficult to solve, an approximate spatial discrete model is used. The discretization is
performed by the assumed modes method, which leads to a linear, finite-dimensional,
continuous-time equations. In the assumed modes method, the deflection of the flexible
structure is modeled by a finite (n terms) series of a space-dependent function multiplied by a
time-dependent function.

Proceeding this way, the dynamic equations of the system can be rewritten in a matrix
form as follows:

τΓ=+ qKqM
..

�� (1)

where

( )
( ) [ ]

[ ] [ ]
[ ]0001

0
00=K 

 
I

I+II

I+I
2-

0I + I

=M

nxn
2

1xn

nxn

1xn

2
iHBB

iHB

HB

�
T=Γ







Ω

























− θ

θ

(2)

with

[ ]Ω2 2

nxn

1
2

n
2

i i
2 =  

0

0

  ,       
EI

ω

ω
ω

ρ
β

�

� � �

�

















= ,      i=1,...,n (3)

In Eq. (1)-(3); θi is the angular displacement of the ith-mode, ρ is the mass/unit length, EI
is the constant bending stiffness of the beam, IH is the inertia of the hub and IB  is the beam
inertia about an end; βi is a separation constant.

In the state-space form,

τBxAx 00 +=� (4)
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qi(t) (i=1,...,n) are the generalized coordinates (modal amplitudes) and θ(t) is the rigid-body

angular displacement.

3.        MODEL ESTIMATION

The system model is identified using an identification algorithm (Moreira and Arruda,
1997) based on the eigensystem realization algorithm (ERA) approach (Juang and Pappa,
1988). The frequency response of the estimated transfer function are compared with the
experimental frequency response in Fig. 2. The functions plots in Fig. 2 refer to the transfer
function from the input signal (the brushless motor command) to the potentiometer, G11, the
tachometer, G21, and the strain-gage, G31, i. e., the position, velocity and deformation signals
are the measured outputs.
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Figure 2 -  Frequency response of the real system and the estimated model.

The estimated plant model, in the canonical Jordan form, yields
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B=[ -2.0957  18.5893   -2.2461   12.6562   -4.3363  -3.5241    2.9510   -1.0298]T



C=[  -0.0088    0.0310   -0.1327    0.0577    0.1038  -0.1667   -0.0105    0.4125
         -0.8312    0.1012   -0.6247   -0.9779    0.5027   0.3189    0.1071    1.9062
         -0.0303    0.1828   -0.9958    0.7336    0.3700  -0.9409    0.1023    0.2571 ]

where σ1 = -5.85, ω1= 385.25,  σ2 = -3.23 , ω2 = 209.60, σ3 =-1.04, ω3 = 75.19.

4.        H∞  ROBUST CONTROL DESIGN

Framework for controller design

The torque motor is the unique actuator in the flexible manipulator. Thus, it has to rotate
the shaft through a desired angle in a way to maintain minimum vibration in the beam. So, the
control target is to execute a maneuver in a short time interval, with small amplitude of the 1st

bending mode, to reduce the manipulator oscillation. In addition, the system model is
truncated since control implementation demands a controller order restriction. Then, the
system must be robust to the residual modes, considered as model uncertainties.

The H∞ robust control approach applies to systems with uncertainties in plant model,
either in order or in the parameters. For our system, these uncertainties are considered being
due to the residual sub-system which resulted from the model reduction (unstructured
uncertainty). In the H∞ control methods these uncertainties can be represented and included
explicitly in the design requirements (Maciejowski, 1989).

The H∞ problem can be summarized as a problem to find a controller K(s) that stabilizes
an augmented system,
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and satisfies the infinite-norm inequality
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where Fz,w is the transfer function from the exogenous inputs w, to the output to be

controlled, z. In other words, to limit the energy transfer from the input w to the output z. The
general form of the problem is shown in Fig. 3. The optimal H∞ problem minimizes the
infinite-norm.

Figure 3 - General problem formulation



Model partition

To determine the nominal plant dynamics, which is used in the controller design, the
system is modeled as a reduced model, Gm, and a residual model, Gr. Partitioning the system
in a modal form, the function Gr in Fig. 4, can be considered an additive uncertainty to the
model. This residual model, which includes all the unmodeled modes, can be substituted by a
low order upper bound function, Gup, such that

∞∞
≥ rup GG (12)

which allows to include in the design, some elements to attain robustness to the residual
dynamics.

Gr

Gm +

Figure 4 - Additive uncertainty model.

The resultant partition of the system is shown in Fig. 5, with G11, G21 and G31 as
defined in section 3.
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Figure 5 - System partition.



Design model

The H∞ design model is shown in Fig. 6 as a Simulink® simulation model. The
performance requirements are associated with the regulated outputs, d and e, respectively the
strain and the error signals. These outputs are weighted by the functions W1 and W2,
respectively. The weighting functions are the design parameters: W1 weights the error-
command relation (sensitivity function) and specifies the response time and steady-state error;
W2 weights the bending rates-command relation and specifies required bending modes
attenuation. The uncertainty model Gup, with the respective uncertainty inputs p1, p2 and p3,
and output q, takes the robustness to the dynamics of the residual modes in the design.
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Figure 6 - Design model as a Simulink simulation model.

The specified W1 and W2 are shown in Fig. 7. The function W1 is a first-order function
with high gain in the frequency region that includes the rigid-body dynamics. The function
W2 is a second-order function with high gain in the frequency region of the first mode.
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Figure 7 - Weighting functions W1 and W2: the error specification and 1st mode attenuation
specification, respectively.



The selected upper bound function for the residual uncertainty is shown in Fig. 9. Only
one function is used to bound the uncertainty Gr. A set of gain factors, K1, K2 and K3, is used
to adjust the gain to the three input-output relationship between the motor command signal
and the measured position, velocity and deformation. In addition, it is utilized a scale factor K
to trade off performance and robustness.
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Figure 9 - Residual uncertainty specification.

Therefore, the selected weighting functions are:
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The final parameters of the design are K = 0.1, K1= 0.1, K2 = 1, K3 = 1, γ = 100. This
parameter γ is utilized to adjust the error specification.

The H∞ controller (AK, BK, CK, DK) for this problem was obtained using the Matlab®
LMI Toolbox yields
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where
σ1 = -83.21, ω1 = 559.23,
σ2 = -5.86, ω2 = 385.25,
σ3 = -3.23, ω3 = 209.60,
σ4 = -48.79, ω4 = 49.22,
σ5 = -4.77, ω5 = 79.23,
σ6 = -9.33, ω6 = 71.79,
σ7 = -8.12,
σ8 = 0,
σ9 = 0.0015.



and

BK =[ -1.0102e+001  1.5746e-005 -2.2534e-005       CK = [  8.7552e-007
 6.1998e+000 -9.6636e-006  1.3830e-005  4.3855e-006
 2.4382e+000 -3.8004e-006  5.4389e-006  4.9774e-006
 8.0536e+000 -1.2553e-005  1.7965e-005 -2.7905e-005
 1.4391e+000 -2.2431e-006  3.2102e-006  1.0646e-005
-2.0551e+000  3.2033e-006 -4.5843e-006  5.4243e-005
-2.1153e+002  3.2971e-004 -4.7186e-004  3.9896e-002
 2.5639e+002 -3.9962e-004  5.7191e-004  4.6044e-001
-2.9508e+000  4.5984e-006 -6.5809e-006  7.4096e-002
-4.9828e+001  7.7668e-005 -1.1115e-004  4.2969e-002
-7.4510e+000  1.1613e-005 -1.6619e-005 -2.2328e-002
-5.3772e+001  8.3815e-005 -1.1995e-004  1.3405e-001
-7.1627e+002  1.1163e-003 -1.5976e-003  1.5480e-001
 1.1096e-005  6.8190e-005   2.9002e-003  8.6104e-011
-1.4627e+003  7.8320e-004 -1.1209e-003 ]  -1.1703e-005 ]T

5.        RESULTS

To verify the performance and the robustness of the control system, a closed-loop
simulation is performed taking in account an extended order model (rigid-body and 3 bending
modes). The step response of the closed-loop system is shown in Fig. 10. The simulation
results are the error signal y1, the strain of the flexible link y3, and the control signal u.
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Figure 10 - Closed-loop response.

6.        CONCLUSION

The results obtained show that the H∞ approach can be used to control a flexible structure
using a truncated model. Some characteristics of this design are: tracking a reference signal;
1st bending mode suppression; use of a low order design model with only the dynamics to be
controlled; robustness to residual modes; and low order additive uncertainty model.

Some fundamental problems we have to face in this approach are: to translate the design
specifications into a set of weighting functions; adequately model the uncertainties; and to
choose the appropriated  plant input and output signals.
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