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Abstract — The characterization of fracture resistance using small scale yielding (SSY) solutions
coupled with a micromechanics model for cleavage fracture based upon the Weibull stress is the focus
of this paper. A computational model employing a modified boundary layer (MBL) formulation is
employed to generate numerical solutions for the crack-tip stress fields of cracked body with well-con-
tained plasticity near the crack tip. One key feature of our investigation is the generation of crack-tip
fields differing in stress triaxiality by varying the non-singular stress, T, parallel to the crack plane.
This introduces the notion of reference fields to provide a measure of constraint loss when large scale
yielding (LSY) effects arise in finite bodies. Another feature of the present investigation is the realistic
modeling of ductile tearing and its implications on the (macroscopic) fracture resistance behavior. The
Weibull stress trajectories under small scale yielding analyses with varying levels of T-stress provide
valuable insight about the effects of crack-tip constraint and ductile tearing on fracture resistance.
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1. INTRODUCTION

In Part I of this article [1], a micromechanics (probabilistic) methodology provides the basis for
establishing a relationship between the microregime of fracture and macroscopic crack driving
forces (such as the J-integral) by introducing the Weibull stress (o,,) [2] as a probabilistic frac-
ture parameter. A key feature in this predictive framework is that the Weibull stress incorpo-
rates both the effects of stressed volume ahead of a macroscopic crack and the potentially
strong changes in the character of the near-tip stress fields due to constraint loss and ductile
crack extension. Unstable crack propagation occurs at a critical value of 0, which may be at-
tained prior to or following some amount of stable, ductile crack extension; the outcome being
determined by the specimen geometry, loading mode (tension vs. bending), material flow prop-
erties and micro-scale tearing resistance. Here, the critical Weibull stress represents a proper-
ty of the material, possibly dependent on temperature, but invariant of loading history. Under
increased remote loading (as measured by <J), differences in evolution of the Weibull stress re-
flects the stress history at material points ahead of the crack tip. When implemented in a finite
element code, the computational model predicts the evolution of the Weibull stress with crack-
tip stress triaxiality and ductile tearing.



The characterization of fracture resistance using small scale yielding (SSY) solutions
coupled with a micromechanics model for cleavage fracture based upon the Weibull stress is
the focus of this paper. A computational model employing a modified boundary layer (MBL)
formulation [15] is employed to generate numerical solutions for the crack-tip stress fields of
cracked body with well-contained plasticity near the crack tip. One key feature of ourinvestiga-
tionis the generation of crack-tip fields differing in stress triaxiality by varying the non-singu-
lar stress, T, parallel to the crack plane [3]. This introduces the notion of reference fields to pro-
vide a measure of constraint loss when large scale yielding (LLSY) effects arise in finite bodies
[17]. Another central feature of the present investigation is the realistic modeling of ductile
tearing and its implications on the (macroscopic) fracture resistance behavior. Here, a realistic
modeling of ductile crack growth using the computational cell methodology [19-21,27] defines
the evolution of near-tip stress fields during crack extension. A simplified form of the Gurson-
Tvergaard (GT) [22, 23] constitutive model for dilatant plasticity serves to predict microscopic
void growth within a layer of cells defined over the crack plane. The Weibull stress trajectories
under small scale yielding analyses with varying levels of T-stress provide valuable insight
about the effects of crack-tip constraint and ductile tearing on fracture resistance.

2. MICROMECHANICS MODELING OF CLEAVAGE FRACTURE

2.1 The Weibull Stress for Stationary and Growing Cracks

Following the development of alocal approach (micromechanics model employing weakest link
philosophy and statistics of microcracks) applicable for cleavage fracture described in Part I
[1], the Weibull stress (0,,) [2] emerges as a probabilistic fracture parameter given by integra-
tion of the (local) principal stress over the fracture process zone in the form [4-7]
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where o, is the maximum principal stress, £ denotes the volume of the (near-tip) fracture pro-
cess zone defined by the loci 0, = Ao, with 4 = 2, and parameter m (the Weibull moduluS)
define the microcrack distribution.

When small amounts of ductile crack growth precede unstable crack propagation by a
cleavage mechanism, the stress history of material points within the process zone for cleavage
fracture is altered thereby affecting directly the evolution of the Weibull stress. Crack growth
elevates the near-tip stress triaxiality, particularly for low constraint configurations, and en-
larges the fracture process zone [24,25]. Thus, a convenient form of the Weibull stress for an
extending crack is obtained by integrating the principal stresses over the active volume of the
fracture process zone which moves forward with the advancing tip [4-6] as
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where 27 denotes the volume of the active fracture process zone, o, = 10, , which moves for-
ward with the advancingtip. The proposed generalization of ¢,, to include ductile tearing main-
tains the relative simplicity of computations while, at the same time, fully incorporating the
effects of alterations in the stress field ahead of the crack tip.

2.2 3-D Modeling of Ductile Crack Growth Using Computational Cells

A central feature of the present work is the realistic modeling of ductile tearing by void growth
using the computational cell methodology [19-21,27] illustrated in Fig. 1(a). Void growth re-



mains confined to a layer of material symmetrically located about the crack plane and having
thickness D, where D is associated with the mean spacing of the larger, void initiating inclu-
sions. This layer consists of cubical cell elements with dimension D on each side; each cell con-
tains a centered spherical cavity of initial volume fraction f|, (the initial void volume divided
by cell volume). Progressive void growth and subsequent macroscopic material softening in
each cell are described with the Gurson-Tvergaard (GT) constitutive model for dilatant plastic-
ity [22,23]. When fin the cell incident on the current crack tip reaches a critical value, f,, the
computational procedures remove the cell thereby advancing the crack tip in discrete incre-
ments of the cell size. Figure 1(b) shows the typical, plane strain finite element representation
of the computational cell model where symmetry about the crack plane requires elements of
size D /2. Material outside the computational cells follows a conventional J, flow theory of plas-
ticity and remains undamaged by void growth in the cells (see [27,18] for addtional details).
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Fig. 1. Modeling of ductile tearing using computational cells.

3. COMPUTATIONAL MODEL AND MEASURE OF CONSTRAINT

3.1 Small Scale Yielding Model

The modified boundary layer model [15] simplifies the generation of numerical solutions for
stationary cracks under well-defined SSY conditions with varying levels of constraint. Figure
2 shows the plane-strain finite element model for an infinite domain, single-ended crack prob-
lem with ainitially blunted notch (finite root radius, p = 2.5um); Mode Iloading of the far field
permits analysis using one-half of the domain as shown. With the plastic region limited to a
small fraction of the domain radius, R, < R/20, the general form of the asymptotic crack-tip
stress fields well outside the plastic region is given by [26]

o, = K
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where Kisthe stressintensity factor, fij(G) define the angular variations of in-plane stress com-
ponents, and the non-singular term 7T represents a tension (or compression) stress parallel to
the crack. Numerical solutions for different levels of T'/o, are generated by imposing displace-

ments of the elastic, Mode I singular field on the outer circular boundary (r = R) which encloses
the crack
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Fig. 2. SSY model with (K, T) fields imposed on boundary.

The uniaxial true stress (5)-logarithmic strain (e) response for the both the background and
cell matrix materials follows a simple power-hardening model,
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where ¢, and ¢, are the reference (yield) stress and strain, and 7 is the strain hardening expo-
nent. Numerical solutions for the SSY boundary-layer model with non-zero T-stress are gener-
ated for material flow properties covering most structural and pressure vessel steels: n=5
(E/oy,=800), 10 (E/0o;,=500) and 20 (E/o,=300) with E =206 GPa and v =0.3; these ranges
of properties also reflect the upward trend in yield stress with the decrease in strain hardening
exponent characteristic of ferritic steels.

Finite element solutions are generated using the WARP3D code [13] which: (1) implements
a Mises constitutive models in a finite-strain framework, (2) solves the equilibrium equations
ateachiteration using alinear pre-conditioned conjugate gradient (LPCG) method implement-
ed within an element-by-element (EBE) software architecture, (3) evaluates the J-integral us-
ing a convenient domain integral procedure and (4) analyzes fracture models constructed with
three-dimensional, 8-node tri-linear hexahedral elements.

3.2 Measure of Constraint Using the SSY Reference Fields

Constraint most generally refers to the evolving level of stress triaxiality ahead of the crack
front under increased remote loading. A convenient approach to quantify the level of constraint
in a finite cracked body utilizes a full “reference” fields constructed for small-scale yielding
(SSY) conditions using large geometry changes (LCG) analysis; fields computed for the finite
body are compared to SSY fields to define relative constraint differences. Such analyses enable
construction of SSY fields for general material response and admit the option to include finite-
strain (blunting) effects at the crack tip. Figures 3(a-d) provide key results to verify the exis-
tence of such fields under well-contained, limited scale plasticity for varying levels of applied
T-stress. In the plots, distances all scale with (K;/o,)? whereas the opening stresses are
normalized by o,,.



At very low remote loading for all levels of applied T-stress (K; = 20, 40MPa ,/m), the near-
tip stressesincrease as the process of crack-tip blunting takes place. After the notch root radius
increases to several times the initial radius p, a steady state solution develops so that the near-
tip fields under SSY conditions are simply a continuous series of self-similar states. Additional
analyses were also conducted for materials with n =5 and n = 20; the crack-tip fields for these
materials display essentially similar trends (to save space, they are not presented here). These
plane-strain fields thus define a family of reference fields for stationary cracks where specified
values for K; and T uniquely define the elastic-plastic fields along the crack tip when a vanish-
ingly small plastic zone encloses the tip. Consequently, the differences between the actual fi-
nite-body field and those of the comparison SSY field (having the applicable elastic T-stress),
quantify the extent of large-scale yielding (L.SY) effects or loss of constraint effects.

4. WEIBULL STRESS TRAJECTORIES UNDER SSY CONDITIONS

4.1 Stationary Cracks

Figures4(a—d)provide key results to assesseffects of constraint variations on macroscopicfrac-
ture toughness using the Weibull stress as a fracture parameter describing local conditions for
material failure. In evaluating the Weibull stress, Eq. (1), under increasing K, levels, three val-
ues of the shape parameter are considered: m = 10, 20 and 30. In particular, m =20 character-
izes the distribution of Weibull stress at cleavage fracture for a nuclear pressure vessel steel
(ASTM A508) [2]. These values of m reflect different microcrack densities and thereby provide
further insight into the fracture behavior for these materials.

Figures 4(a-c) show the variation of Weibull stress under increasing deformation for the
three levels of hardening n =5, 10, 20 each with m = 20, and for values of T-stress ranging from
-0.75 = T/o, = 0.25. For T/o,=0 and fixed strain hardening (n = 10), Figure 4(d) shows the
variation of Weibull stress with increasing deformation for m =10, 20 and 30. In these plots,
K % / (ogR) describes the far-field loading with the Weibull stress normalized by the yield stress,
o,- The evolution of ¢, as deformation progresses depends markedly on the degree of strain
hardening and T'/o,. Positive values of T/o, have a small effect at all hardening levels. For
all T'/o levels, the Weibull stress for n =5 increases steadily with deformation and remains
well above the values for n =10 and 20.

The most striking feature of these results, however, is the development of ¢,, with increas-
ing deformation for negative values of T in the materials with n =10 and 20 (see Figs. 4(b,c)).
The Weibull stress in these materials increases at a much lower rate with increasing deforma-
tion, especially for the low hardening material in therange -0.75 < T'/o, < -0.5. Under these
conditions of severe constraint loss, there develops early in the loading a maximum value of
oy indicated by a marker (X) on these curves. At higher remote loading but with continuing
constraint loss, the Weibull stress decreases due to the lower near-tip stresses. In the post-peak
regime, o0, as defined here cannot describe a realistic failure probability for the cracked body,
which must continue to increase possibly by the intervention of ductile tearing as demon-
strated in [4]. In contrast, o, for n =5 increases monotonically over the full range of deforma-
tion analyzed for all values of T'/o,, i.e., the increased stresses provided by hardening more
than offset the loss in stress triaxiality. These results demonstrate clearly the strong effect of
constraint loss (T'/o, < 0) on the levels of o,, for moderate-to-low hardening materials. These
trends remain relatively independent of the m-value adopted, as can be seen in Fig. 4(d). Here,
m simply scales the magnitude of Weibull stress after the early stages of loading in accordance
with ¢, = ,BmK;L/ " [9], where the proportionality constant, §,,, depends on m.

In summary, the micromechanics approach adopted admits the simple axiom that cleavage
fracture occurs when the Weibull stress reaches a critical value, 0,,., which is a material depen-



dent property. The analysis results shown in Fig. 4 demonstrate that attainment of ¢,,. for low
constraint crack configurations occurs, if at all, only at much greater deformation levels (K;)
relative to high constraint configurations. Moreover, the combination of a low strain hardening
material and a low constraint crack configuration may never generate o,, = 6,,¢, in which case
cleavage fracture cannot occur unless some other event (e.g., ductile tearing) elevates the near-
tip stresses.

4.2 Growing Cracks

The previous results demonstrate a significant reduction of the Weibull stress under low
constraint conditions (negative T-stress) for low and moderately hardening materials. This sec-
tion examines the potential for ductile tearing to counteract the effects of constraint loss and
thus restore the Weibull stress to high constraint levels — such an outcome would aid in ex-
plaining the transition from a stable ductile tearing mode to a cleavage mode of fracture. To
conserve space, we describe only key results computed for m =20 (shape parameter) and
f,=0.001 (initial void fraction for the material). Similar trends and conclusions are drawn for
other m and f|, values. For the strongly negative T-stress levels, these analyses typify cleavage
fracture accompanied by small amounts of stable crack growth structural steels in low-
constraint configurations. In the context of our computational cell model, values of f,
(0.001-0.003) and cell sizes of D =200um characterize materials with moderate crack growth
resistance [19-21].

Figures 5(a,c) show the computed crack growth resistance curves for materials having
n=10, 20 and f,=0.001. J is normalized by the cell size and flow stress (Do) while Aa is
normalized by D. The cell with current porosity f=0.1 defines the current crack tip location,
and thus Aa[19-21]. This “operational” definition locates the crack tip in the region behind the
peak stress where stresses decrease rapidly, but ahead of the very highly damaged region,
where the GT model does not accurately predict material response. Figures 5(b,d) present the
dependency of 0,,, Eq. (2), on crack growth. For all levels of crack-tip constraint represented
by T'/o,, the Weibull stress increases monotonically with ductile extension (compare Figs. 5
(b,d) with the no-growth results in Figs. 4 (b,c)). The levels of ¢, for the material with n =20
remain consistently lower than the levels for the material with n = 10 at the same value of T'/o,,
and crack extension. These results clearly reflect the less severe near-tip stresses that develop
for the n =20 material and for low-constraint conditions. The computed R-curves at large
growth reveal a different trend of lower toughness with higher strain hardening for all
constraint levels.

In summary, these representative analyses demonstrate important features associated
with the evolution of Weibull stress for a growing crack. The physical significance is this: duc-
tile tearingincreases the crack-tip driving force (o,,) as deformation progresses particularly so
forlow-constraint configurations, which increases the likelihood of unstable crack propagation
by cleavage. The trends shown here are consistent with those obtained in previous numerical
analyses [28, 29] in that stable crack growth elevates the near-tip stresses and increases the
volume of the cleavage fracture process zone. Since o0, explicitly incorporates the crack-tip
stress field and the volume of the near-tip stressed material, it fully captures the governing
features for cleavage fracture in growing cracks.
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Fig. 3. Near-tip opening stresses under SSY conditions for n =10, E/0, =500 and varying levels of applied
T-stress. Plots are generated for load levels K; =20, 40, 60, 80, 100, 125 and 150 MPam?/2,
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Fig. 4. Stationary crack analysis under SSY conditions and varying hardening properties for E /o, = 500.
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Fig. 5. Crack growth analyses under SSY conditions and varying hardening properties for E/o,=500 and
fo=0.001 (Weibull stress is computed using the instantaneous fracture process zone).
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