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Abstract. Reliable predictions of remaining lives of civil or mechanical structures subjected
to fatigue damage are very difficult to be made. In general, fatigue damage is extremely
sendgitive to the random variations of material mechanical properties, environment and
loading. These variations may induce large dispersions when the structural fatigue life hasto
be predicted. Wirsching (1970) mentions dispersions of the order of 30 to 70 % of the mean
calculated life. The presented paper introduces a model to estimate the fatigue damage
dispersion based on known datistical distributions of the fatigue parameters (material
properties and loading). The model is developed by expanding into Taylor series the set of
equations that describe fatigue damage for crack initiation.
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1- INTRODUCTION

A simple model to predict cumulative fatigue damage of a structure is the Palmgren-
Miner’s cycle-ratio summation theory. In a deterministic way, Miner’srule is written as:
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where d; isthe calculated damage after atotal of ni cycles of same stress (AO; = stress range,

om, = mean stress) and N; isthe total life corresponding to each stress pair as it was the only
one soliciting the point in consideration of the structure. In expression (1) n; is the total
number of cycles in the loading history and f; is the relative frequency of a cycle of some
stress (=n /n, ). When n; isarandom variable and the material has strength variations such that
Ni is aso a random variable, it is important to determine the statistical behavior of the damage
(mean, variance, maximum damage, cumulative distribution, etc). Defining the uncertainties of
di, ni, and N; respectively as &d; , on; , and ONi , and assuming that these are reasonably small,
od; can be calculated as function of dn; and dN; using the linear terms of a Taylor’s expansion;
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and the damage uncertainty will be written as
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The next sections will deal with the calculation of dd; , dn; , and dN; in a more explicit and
rigorous way.

2- DAMAGE CALCULATION

The fatigue analysis of a structural point requires the characterization of two general
aspects. The first aspect involves load description in terms of a typical history and its possible
variation. The second aspect involves the establishment of the material fatigue constitutive
equations and its variability in terms of the material fatigue parameters.

2.1 - Damage Calculation - Loading Variability

Each stress history is unique and is dependent on : (i) minute variations of the geometry of
the structural component; (ii) the specific variations of the loading trajectory or other loading
parameters. For example, it can be observed that a structural part of a automotive vehicle
suffers stress variation due to : the instantaneous dead weight of a vehicle, driving speed,
environment temperature, skills of driver, etc. Therefore, recorded tapes of different runs of
the same type of vehicle in the same road present a random behavior. This behavior will be
broadened if other roads with different percentages of usage are incorporated in a big set of
histories. In the approach suggested in this paper, each loading history is acquired and
compacted in terms of a histogram through a stress or strain-cycle counting-technique such as
the “rain-flow” or “pagoda’ method [Matsuishi, 1968]. After the application of the stress-
cycle counting-technique to K loading histories, the relative frequency of the stress ranges,

f (AS), can be estimated from these histories through equations (4.1) and (4.2) below.

f(as) = f = €[1)] :% DZ; f, (4.1)
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where f, is the mean relative frequency of occurrences of AS in the K histories and nj(AS) is
equal to the number of occurrences of the stress-range AS in the | loading history; n is the

total number of cycles which were counted in the j* loading history.

Equations 5.1 to 5.3 below quantify the variability of the typical history through the
variance of the frequency of occurrence of the stress-ranges. The estimates of variance can be
calculated through the following expressions :

Classical Estimator :

ARE] = (- £)] = (- 1) (51)




where f. - isthe mean relative frequency of the stress-rangein the i class of the histogram and
K is the number of the loading histories acquired.

Analytical Estimator, Bendat (1983) :

foof1-f,
AR[f] = ¥ (52)
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where R, is the average of the total number of cycles counted for the K histories,
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The last expressions does not consider the possible statistical dependence between the
frequencies for each class in the K histograms. In these cases the variances are calculated
through the expression [Mardia, 1979] :
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where f is the (K x P) data matrix of the frequencies for each class (i = 1, ..., P) in the K
histograms, 1 is a column vector of K ones, and | isthe (K x K ) identity matrix.

A typical histogram of the mean relative frequency of stress-range and of the estimates of
standard deviations calculated through the equations 5.1 and 5.2 are shown in figure 1.
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Figure 1 - Histograms of the Mean Relative Frequency and of the Relative Frequency Standard
Deviation of the Stress-Range for a History

2.2 - Damage Calculation - M aterial Variability

Once the dispersion of the loading parameters, &n;, will be evaluated by VAR[n] or
VAR[f], the calculation of the dispersion of the accumulated damage, 8D, also requires the



determination of the dispersion associated with fatigue strength, dN. This section shows how
the dispersions associated with the material properties influence the fatigue life N. Calculation
of VAR[Ni] will allow the determination of dD. The determination of VAR[N;] will be based on
Coffin-Manson’s exN fatigue expressions described by equations (6), [Fatigue Design
Handbook, 1988].

(K, )" _a0* a0 gao @

6.1
4[E (6-1)
Ae Ao G
A () () :
s _ 22 6.2
> T2 m'@ (62)
-
%:E‘ {2N)® +g, [[2N)° (6.3)

where K is the fatigue stress concentration factor, AS and Ao are respectively the nominal and
maximum stress-range, A is the maximum strain-range; E is the Y oung Modulus, and K’, n’,
oy, b, €, and c are materia fatigue properties.

Expanding equation (6.1 - 6.3) into Taylor series and approximating the mean and the
variance statistics by the first order terms of the expansion, [Wirsching, 1984, Harr, 1987,
Kam, 1994], it is possible to determine E[2N] and VAR[2N]. Equations (7.1) to (7.6) show a
few steps of the proposed development [Freire and Ferreira, 1995, Ferreira, 1997].

Considering equation (6.1) it is possible to determine,
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Ki, K’, n']", and X° is the vector of the average values of the mechanical properties of the
material, of the nominal stress-ranges, and the fatigue stress concentration factor.
From equation (6.2),

E[Ag] = Ae (7.3)
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where X = X [x] = [E, K’, ", Aa]", x° is the vector of the average values of the mechanical



properties of the material and the stress-range, ¢ = [E, K’, n']", and COV[AQ, ¢] is the
covariance between Ao and the material properties utilized in the Equation (6.2). This
statistical measure can be estimate through of the expression:
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Applying the same technique to equation (6.3), but using a second order expansion, it is
possibleto obtain : [Freire and Ferreira, 1995; Ferreira, 1997];
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and I° is the vector of the average values of the fatigue properties and Ae. Finally,
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2.3 - Damage Uncertainty

The typical damage value is calculated from the mean relative frequencies of the K loading
histories (f,, eg. (4.1)) and the typical life values , N, , determined by applying the average
values of loading and material properties to equation 6.3.
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where ny is the total number of cycles per block.
Using first and second order expansion, the mean damage can be calculated, respectively,
through expressions (8.2) and (8.3).
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where f and N, and AR[N,] were defined respectively by expressions 4.1, 7.5 and 7.6.
Expanding the equation (1), linearly using a Taylor’s series, the uncertainty of damage
may be represented by the variance of damage, VAR[D], given by

ARDl =(f,)* {D, [F D] +D, V] ¥, D7) (8.4)

where  =[{N],{N,],-~-.{ NJ]",s[+] isthe standard deviation, and Dy, Dy and F are
given below by equation 8.5, 8.6 and 8.7.
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3-NUMERICAL RESULTS

This section show the results determined using the proposed model for damage
uncertainty estimation and their comparison with the direct application of the Monte Carlo
Method [Harr, 1987] to the same data conditions. In this analysis random variations were
considered to be present in the loading histories and in the mechanical properties of the
material. Damage uncertainty was generated by the combination of the variations of the
loading history and material properties. The mechanical properties of the material MANTEN
steel are given in the table 1.

It was assumed that the mechanical properties of the MANTEN steel presented
coefficients of variation of the order of 7.5%. In other words, it was assumed that all material
constants had standard deviations equal to 7.5% of their mean values. It was also assumed the
presence of a notch with a stress concentration factor constant and equal to 3.



Table 1 - Mechanical Properties of MANTEN [Fatigue Design Handbook, 1988]

Monotonic Properties:

Y oung Modulus, E [GPA] 206
Yield Strength, S, [MPA] 324
Tensile Strength, Sy [MPA] 565

Cyclic Properties:

Cyclic Strength Coefficient, K’ [MPA] 1200
Cyclic Strength Exponent, n’ 0.20
Fatigue Strength Exponent, b 0.26
Fatigue Ductility Exponent, ¢ -0.47
Fatigue Strength Coefficient, o [MPA] 917
Fatigue Ductility Coefficient, € -0.095

In order to evaluate the proposed model, 18 different loading histories represented by their
one-sided power spectral density (PSD) were used. Each one of these 18 PSDs were used to
generate 400 loading blocks through Gaussian simulation [Ferreira and Freire, 1995], each
block containing 3,000 extremes (picks and valley). In thisway, histograms with the estimates
of the mean relative frequency and their respective uncertainties, calculated through equations
(4.1) and (4.2), were based on about 1,200,000 extremes for each of the 18 different histories.
The material and loading generated above (stress-range histograms and material’s properties)
were used to calculate damage results through expressions 8.2 - 8.4. The estimates calculated
from these equations were compared with estimates generated from the application of a Monte
Carlo technique.

To infer the statistical properties of the accumulated damage through the Monte Carlo
techniques it was also necessary to define the average and variance of the histogram of the
stress-ranges and of the mechanical properties of the material. In this specific case, the Monte
Carlo technique was applied to the set of equations (6.1) to (6.3).

The number of trials accomplished to evaluate the statistical properties of the accumulated
damage were superior to 60,000. The estimates obtained from the proposed analytic model and
from the Monte Carlo technique for the mean, median, standard deviation, and coefficient of
variation of the damage are presented and compared respectively in the plots of figures 2 to 6.
The comparison between the estimates of the mean of the damage obtained analyticaly and
through the Monte Carlo simulation are presented in figure 2. It is verified that the results
obtained through the second order method, eg. (8.3), allow a quite precise evaluation of this
statistic.
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Figure 2 - Mean Damage Estimates

The comparison between the estimates of the median values of the damage, obtained by
Monte Carlo simulation, with the typical damage, calculated through the equations 6.1 - 6.3,
show a very good correlation as it can be observed in the figure 3. Thisis an interesting result
because it alows the evaluation of another statistic that describes the damage behavior, in a

very easy way.
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Figure 3 - Median Damage Estimates

The predictions of the standard deviation of the damage show that the first and second
order methods presented biased estimates when compared to the respective results obtained by
simulation of Monte Carlo, as it can be observed in figure 4.
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Figure 4 - Standard Deviation of Damage

However, asit can be observed in figure 5, the biased behavior of the damage dispersion is
attenuated when the coefficient of variation of the damage is calculated using the analytical
estimates of first order of the standard deviation and of the mean.
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Figure 5 - Coefficient of Variation of Damage

Using the results of the figures 4 and 5 a quite efficient form of evaluating in an unbiased
way the standard deviation is to consider the product of the coefficient of variation and the
mean value of the damage, calculated respectively through the equations of first and of second
order. A comparison between the results obtained through this way and that calculated through
the Monte Carlo method is presented in the figure 6.
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4 - CONCLUSIONS

This paper describes a set equations to determine the basic statistical parameters of fatigue
damage evaluations. The predictions equations are based on Palmgren-Miner’s rule and the -
N method. It alows for the combined use of random loading and random materia properties.
The developed model was applied to 18 damage examples and the results obtained have been
compared satisfactorily with others determined by standard Monte Carlo prediction techniques.
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