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Abstract: A one-dimensional initial-b oundary value problem of isothermal elasto dy-
namics for a micro-periodic layered semi-space in which a microstructural length is
taken into account, is studied. In such a theory, called Re�ned Averaged Theory (RAT),

the layered semi-space is composed of identical two-layer homogeneous isotropic elas-

tic subunits that are mechanically bonded to form a spatially periodic pattern. The
�eld equations consist of: (i) The h-approximation of a displacement �eld which me ans

that the displacement is a linear function of a micro-periodic shape function h, (ii)
Two equations of motion involving a stress S, a body force H, and two coe�cients of
the h-approximation: a macro-displacement U and a displac ement corrector V, and

(iii) Two constitutive relations connecting (S,H) to (U,V). By eliminating U,V, and
H from (ii) and (iii), one obtains the stress equation of motion for S involving a high
frequency parameter. In the paper a pure stress initial-boundary value problem for the
micro-periodic layered semi-space is formulated, and a uniqueness theorem for the prob-
lem is proved. The proof is based on observation that the stress problem desribed by the

partial di�erential equation subject to suitable initial and boundary conditions can be
replaced by the problem involving an integro-di�erential equation for which an energy
integral vanishes. Also, a closed-form Gr een's function for the pure stress problem is
obtained, and a number of properties of the function are revealed.
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1. INTR ODUCTION

A classical initial-boundary value problem that describes propagation of an elastic

wave in a layered semi-space x � 0 is a problem in which we are to �nd an elastic

process (see Gurtin, 1972, p. 215) that satis�es the �eld equations of linear elastody-
namics inside eac h of the layers and for every time t � 0 , suitable interface conditions,

initial conditions, and boundary conditions at x = 0 and x = 1 . If the number of

layers is very large, then even in the case of a one-dimensional problem in which a

periodically layered semi-space is subject to uniform dynamical pressure on its bound-

ary x = 0 , an analytical solution to the problem is not feasible. For a microperiodic



layered semi-space one can replace classical formulation of the problem by an approxi-
mate one in which a wave propagates in a semi-space with smeared material properties.

The procedure leading to formulation of the approximate problem is based on a linear

approximation of the displacement �eld with respect to a microperiodic shape function

h = h(x) , and on a quadratic approximation of the associated kinetic and potential

energy densities. The associated Hamilton-Kirchho� principle leads to the governing
equations and the stress boundary condition for the approximate problem (cf. C. Wo¹-
niak and M. Wo¹niak, 1995). A characteristic feature of the approximate method is

that a microstructure length l that stands for the period of layering, is included in

the formulation: in the displacement �eld equations a coe�cient proportional to l
2

appears, and in the stress �eld equation a characteristic high frequency proportional

to l
�1 appears. By letting l ! 0 in the formulation one obtains a problem of the ef-

fective modulus theory (EMT) in which the microstructural length is absent. If l > 0 ,

the formulation is more re�ned than that of EMT, and for this reason a theory that

accommodates the formulation with l > 0 is called a Re�ned Average Theory (RAT).

In the present paper RAT is used to study a one-dimensional initial-boundary
value problem of isothermal elastodynamics for a micro-periodic layered semi-space

subject to uniform pressure on its boundary.
In Section 2 the basic equations of RAT for a microperiodic layered semi-space are

recalled, and a stress formulation of the problem is presented. In Section 3 a uniqueness

theorem for the stress initial-boundary value problem of Section 2 is proved. And in
Section 4 a series form of the Green's function for the stress problem is obtained, while
in Section 5 �nal conclusions are presented.

2. BASIC FIELD EQUATIONS FOR A MICROPERIODIC LAYERED

ELASTIC SEMI-SPACE

Consider a layered semi-in�nite elastic solid composed of an in�nite number of
identical subunits that are mechanically bonded to form a spatially periodic pattern
as shown in Fig.1.

Figure 1- Con�guration of a microperiodic layered elastic semi-space.

Each subunit consists of two layers that, in general, have di�erent dimensions and are

made of di�erent homogeneous isotropic elastic materials. Let li; �i; �i and �i (i =
1; 2); respectively, denote the physical dimension, density, Lam�e modulus, and shear

modulus of the ith layer in a subunit. If the interface conditions between any two

adjacent layers are assumed to be of an ideal mechanical contact type, that is, the



displacement and stress vector are continuous across an interface, and a mechanical
load is uniformly distributed over the boundary x = 0 for every t � 0 , an elastic

process in the layered semi-space can be described by a solution to a one-dimensional

initial boundary value problem of classical elastodynamics. In such a problem the �eld

equations of homogeneous isotropic elastodynamics are to be satis�ed for each layer

and suitable initial, interface, and boundary conditions at x = 0 and x = 1 are to
be met. Since an exact solution to the problem is not feasible, the classical formulation
for the layered semi-space is replaced by the approximate one of RAT (see C. Wo¹niak

and M. Wo¹niak, 1995; and J. Ignaczak, 1999). The �eld equations of the approximate

theory read.
The h-approximation of the displacement �eld

u(x; t) = U(x; t) + h(x)V (x; t) (1)

The equations of motion
Sx� < � > Utt = 0

H+ < �h
2
> Vtt = 0

(2)

The constitutive relations

S =< � > Ux+ < �hx > V

H =< �hx > Ux+ < �h2x > V
(3)

Here, h = h(x) is a dimensionless oscillating periodic funtion on [0;1) with period

l that satis�es the conditions

< h >= 0; < �h >= 0; < �hx >6= 0 (4)

for any function � = �(x) on [0; l] of the form

�(x) =

(
�1 for 0 � x < l1

�2 for l1 � x < l

)
(5)

where �1 and �2 are constants (�1 6= �2) ; and for any function F = F (x) on [0; l]

the symbol < � > represents the mean value of F on [0; l]

< F >=
1

l

Z l

0

F (x)dx (6)

In addition, the function h = h(x) satis�es the asymptotic estimate

h(x) = l O(1) as l ! 0 (7)

If l is small, the function h = h(x) represents a micro-periodic shape function. A
typical micro-periodic shape function h = h(x) restricted to the interval [0; l] is shown

in Fig. 2.

Figure 2- A microperiodic shape function h = h(x) over the interval 0 � x < l .



Other symbols in in Eqs. (1)-(3) have the following meaning. In Eq.(1) the
function u represents a displacement in the x-direction; U is a macro-displacement

in the x-direction and V is a displacement corrector, respectively. In Eqs. (2)-(3) the

function S is a stress component in the x-direction and H is a body force component

in the x-direction; moreover, � = � + 2� , where � and � are Lam�e moduli, and �

is the density. The subscripts in Eqs. (2)-(3) indicate partial derivatives.
The kinetic energy density K = K(x; t) and the potential energy density P =

P (x; t) , associated with Eqs. (1)-(3), are represented by the functions

K(x; t) =
1

2

h
< � > U

2

t + < �h
2
> V

2

t

i
(8)

and

P (x; t) =
1

2

h
< � > U

2

x + 2 < �hx > UxV+ < �h2x > V
2
i

(9)

Note that Eqs. (2)-(3) form a complete set of four �eld equations of the one-dimensional

theory for the four unknowns: U; V ; S; and H . By eliminating the pair (S;H) from
Eqs. (2)-(3) we arrive at the displacement �eld equations for the pair (U; V )

< � > Uxx+ < �hx > Vx� < � > Utt = 0

< �hx > Ux+ < �h2x > V+ < �h
2
> Vtt = 0

(10)

Also note that an alternative form of the constitutive relations (3) reads

Ux =
1

< �� >

"
S �

< �hx >

< �h2x >
H

#

V = �
1

< �� >

< �hx >

< �h2x >

"
S �

< � >

< �hx >
H

# (11)

where

< �� > =< � > �
< �hx >

2

< �h2x >
(< �� >> 0) (12)

Therefore, by eliminating the pair (U; V ) from Eqs. (2) and (11) we obtain the �eld

equations for the pair (S;H) :

Sxx �
< � >

< �� >

"
Stt �

< �hx >

< �h2x >
Htt

#
= 0

H �
< �h

2
>

< �� >

< �hx >

< �h2x >

"
Stt �

< � >

< �hx >
Htt

#
= 0

(13)

Finally, by eliminating the function H from Eqs. (13) we arrive at the stress equation

of motion for S : 
@
2

@x2
�

1

< c1 >
2

@
2

@t2

!  
@
2

@t2
+ �

2

!
S �

!
2

< c1 >
2

@
2

@t2
S = 0 (14)

where

< c1 > =
< � >

1=2

< � >1=2
� = 


< �� >1=2

< � >1=2

! = 


 
1 �

< �� >

< � >

!1=2

 =

< �h2x >
1=2

< �h2 >1=2

(15)



Clearly, < c1 > has the dimension of velocity, and 
 has the dimension of frequency,
i.e.

[< c1 >] =
h
L T

�1
i

[
] = [�] = [!] =
h
T
�1
i

(16)

where L and T stand for the length and time units, respectively; and [�] represents

the dimension of a physical quantity.
As a result, for the microperiodic layered semi-space subject to homogeneous initial

conditions and uniform pressure s = s(t) on its boundary x = 0 , the following

pure stress initial-boundary value problem may be formulated. Find a stress �eld

S = S(x; t) on [0;1) � [0;1) that satis�es the �eld equation

 
@
2

@x2
�

1

< c1 >
2

@
2

@t2

!  
@
2

@t2
+ �

2

!
S �

!
2

< c1 >
2

@
2

@t2
S = 0

for x � 0; t � 0

(17)

subject to the initial conditions

S(x; 0) = 0
@

@t
S(x; 0) = 0

@
2

@t2
S(x; 0) = 0

@
3

@t3
S(x; 0) = 0 for x � 0 (18)

and the boundary condition

S(0; t) = �s(t) for t � 0 (19)

where s = s(t) is a prescribed function. Moreover, the function S and its partial
derivatives of a �nite order are to vanish as x ! 1 for every t > 0 .

If a solution S to the problem (17)-(19) is found, the functions H;U; and V are
computed from the formulas

H(x; t) =
< �hx >

< � >

Z t

0

cos �(t � � )
@S

@�
(x; � )d� (20)

U(x; t) =
1

< � >

Z t

0

(t � � )
@S

@x
(x; � )d� (21)

and

V (x; t) = �
1

< �h2 >

Z t

0

(t � � )H(x; � )d� (22)

Also, note that the pure stress problem (17)-(19) contains two high frequency param-

eters � and ! , since, by Eqs. (7) and (15) we have

� = l
�1

O(1); ! = l
�1

O(1); as l ! 0 (23)

3. UNIQUENESS THEOREM FOR THE PURE STRESS PROBLEM

Theorem 3.1 The pure stress initial-boundary value problem (17)-(19) may have

at most one solution.
Proof is based on observation that the problem (17) - (19) with s � 0 is equiv-

alent to the following one. Find a �eld � = �(x; t) on [0;1) � [0;1) that satis�es



the integro-di�erential equation

 
@
2

@x2
�

1

< c1 >
2

@
2

@t2

!
� �

!
2

< c1 >
2

Z t

0

cos �(t � � )
@�

@�
(x; � ) d� = 0

for x � 0; t � 0

(24)

subject to the conditions (� = @=@t)

�(x; 0) = 0; _�(x; 0) = 0 for x � 0 (25)

and

�(0; t) = 0 for t � 0 (26)

Moreover, the function � and its partial derivatives of a �nite order are to vanish as

x ! 1 for every t > 0 .
A stress �eld S that satis�es Eqs. (17)-(19) with s � 0 is related to � by

S(x; t) =
1

�

Z t

0

sin�(t � � ) �(x; � )d� (27)

Clearly, if � � 0 on [0;1) � [0;1) , then by Eq. (27), we obtain S � 0 on [0;1) �
[0;1) .

To show that Eqs. (24)-(26) imply that � � 0 on [0;1) � [0;1) , we multiply

Eq. (24) by _� and obtain

_��xx �
1

< c1 >
2

_��� �
!
2

< c1 >
2

_�(x; t)
Z t

0

cos�(t � � ) _�(x; � ) d� = 0 (28)

Since

_��xx �
1

< c1 >
2

_��� =
�
_��x

�
x
�

1

2

@

@t

�
(�x)

2
�

1

< c1 >
2

�
_�
�2� (29)

therefore, integrating Eq. (28) over the space-time domain: 0 � x < 1 ; 0 � s � t ,
and using the homogeneous initial-boundary conditions (25)-(26), we obtain

Z
1

0

�
1

2
[�x(x; t)]

2
+

1

2

1

< c1 >
2

h
_�(x; t)

i2�
dx +

!
2

< c1 >
2

Z
1

0

�Z t

0

Z s

0

_�(x; s) _�(x; � ) cos�(s � � ) d� ds

�
dx = 0

(30)

Hence, we get the estimate

1

2

Z
1

0

h
_�(x; t)

i2
dx � !

2

Z
1

0

�Z t

0

Z s

0

j _�(x; s)j j _�(x; � )j d� ds

�
dx

(31)

Next, since for an arbitrary function A = A(t) on [0;1)

Z t

0

�Z s

0

jA(� )jd�

�
jA(s)jds =

1

2

�Z t

0

jA(s)jds

�2

(32)



therefore, by the inequality (31), we obtain

Z
1

0

h
_�(x; t)

i2
dx � !

2

Z
1

0

�Z t

0

j _�(x; s)j ds

�2
dx (33)

Now, by virtue of the Schwartz inequality, for an arbitrary function f = f(s) on

[0;1) , we get �Z t

0

jf(s)jds

�2

� t

Z t

0

jf(s)j2ds (34)

Hence, by the inequalities (33)-(34), we obtain

Z
1

0

h
_�(x; t)

i2
dx � !

2
t

Z
1

0

�Z t

0

h
_�(x; s)

i2
ds

�
dx (35)

Therefore, if we introduce the function

N(t) =
Z
1

0

�Z t

0

h
_�(x; s)

i2
ds

�
dx (36)

we check that N(0) = 0 , and

d

dt

"
exp

 
�

!
2
t
2

2

!
N(t)

#
� 0 (37)

By integrating this inequality over the interval [0; t] , we obtain: N(t) � 0 on [0;1) .
This together with Eqs. (25) and (36) imply that � � 0 and S(x; t) � 0 on [0;1) �
[0;1) . This completes proof of Theorem 3.1.

4. CLOSED-FORM GREEN'S FUNCTION FOR THE PURE STRESS

PROBLEM

One can show that a solution to the problem (17)-(19) takes the form

S(x; t) =
1

�

Z t

0

sin�(t � � ) �(x; � )d� (38)

where

�(x; t) =
Z t

0

G(x; t � � )
h
�s(� ) + �

2
s(� )

i
d� (39)

and G = G(x; t) is a Green's function for the integro-di�erential equation (24). The

function G satis�es the equation

 
@
2

@x2
�

1

< c1 >
2

@
2

@t2

!
G �

!
2

< c1 >
2

Z t

0

cos �(t � � )
@G

@�
(x; � ) d� = 0

for x � 0; t � 0

(40)

the initial conditions

G(x; 0) = 0 _G(x; 0) = 0 for x � 0 (41)

the boundary condition

G(0; t) = � �(t) (42)



and vanishing conditions at in�nity. In Eq. (42) � = �(t) is the Dirac delta function.
Using a Laplace transform technique (Ignaczak, 1999) the following series solution

of the problem (40)-(42) is obtained

G(x; t) = ��(t �
x

< c1 >
) � H(t �

x

< c1 >
) g

�
x; t �

x

< c1 >

�
(43)

where H = H(t) is the Heaviside function

H(t) =

(
1 for t > 0

0 for t < 0

)
(44)

and g = g(x; t) is the series of Neumann's type for the integro-di�erential equation

(40)

g(x; t) =
1X
n=1

(�1)n

n!

 
x!

2

2 < c1 >

!n "
fcos �tgn +

n

1X
�=1

(�1)�

�!

 
!
2

4

!�
(n+ 2� � 1)!

(n+ �)!(� � 1)!
ft

��1
gfcos �tgn+�

#

for x � 0; t � 0

(45)

Here, for arbitrary functions a = a(t) and b = b(t) on [0;1) , the symbol fagfbg
represents the convolution product of a = a(t) and b = b(t) de�ned by (Mikusi«ski,

1959)

fagfbg =
Z t

0

a(t � � )b(� )d� � a � b (46)

In particular, ffgn represents n-th convolutional power of a function ff (t)g � f(t) .

With regard to the series (45) the following theorem holds true.
Theorem 4.1 (i) The series (45) and its partial derivatives with respect to x and

t of a �nite order converge uniformly for every point (x; t) 2 [0;1) � [0;1) and for
arbitrary positive �nite parameters !; � and < c1 > . (ii) For the function g = g(x; t) ,

represented by the series (45), the pointwise estimate holds true

jg(x; t)j �
x!

2

2 < c1 >
exp

"
x!

2
t

2 < c1 >

#
exp

"
!
2
t
2

4

#

for x > 0; t > 0; ! > 0

(47)

Proof is based on the relations:
(A)

jfcos � tg
n
j � f1gn for n � 1 (48)

where

f1gn =
1

(n � 1)!
ft

n�1
g for n � 1 (49)

(B)
1

(� � 1)!
jft

��1
gfcos �tgn+�

j �
ftn+2��1g

(n + � � 1)! �!
for n � 1; � � 1 (50)



(C)
(n + 2� � 1)!

(n+ � � 1)! (n + �)! �!
� 1 for n � 1; � � 1 (51)

To prove (A) we use the de�nition of convolution of two functions and a method

of mathematical induction. Similar tools may be used to obtain proof of (B) and (C).
To show (i) we introduce the functions

S1(x; t) =
1X
n=1

(�1)n

n!

 
x!

2

2 < c1 >

!n

fcos �tgn (52)

S2(x; t) =

1X
n=1

(�1)n

(n � 1)!

 
x!

2

2 < c1 >

!n
1X
�=1

(�1)�

�!

 
!
2

4

!�
(n+ 2� � 1)!

(n+ �)!(� � 1)!
ft

��1
gfcos �tgn+�

(53)

Using the inequalities (48) and (50) we obtain

jS1(x; t)j �
1X
n=1

1

n!

 
x!

2

2 < c1 >

!n
t
n�1

(n � 1)!
(54)

and

jS2(x; t)j �

1X
n=1

1

(n � 1)!

 
x!

2

2 < c1 >

!n
1X
�=1

1

�!

 
!
2

4

!�
(n+ 2� � 1)!

(n+ �)!

t
n+2��1

(n+ � � 1)! �!

(55)

Next, since n! � 1 for n � 1 , by Eq. (54), we get

jS1(x; t)j �

1X
n=1

 
x!

2

2 < c1 >

!n
t
n�1

(n � 1)!
=

x!
2

2 < c1 >
exp

"
x!

2
t

2 < c1 >

#
(56)

Similarly, by Eqs. (51) and (55), we obtain

jS2(x; t)j �

1X
n=1

1

(n � 1)!

 
x!

2

2 < c1 >

!n

t
n�1

1X
�=1

1

�!

 
!
2
t
2

4

!�

=

x !
2

2 < c1 >
exp

"
x !

2
t

2 < c1 >

#(
exp

"
!
2
t
2

4

#
� 1

) (57)

Since

g(x; t) = S1(x; t) + S2(x; t) (58)

therefore, by Eqs. (56), (57), the series (45) converges uniformly for every (x; t) 2
[0;1)� [0;1 ) and for arbitrary positive parameters !; � and < c1 > . To prove that

a derivative of the series (45) with respect to x and t converges uniformly over the

same range of variables (x; t; !; �; < c1 >) , we proceed in a way similar to that of the
series (45). This completes proof of part (i). Finally, by virtue of the inequalities (56),

(57) and Eq. (58), we arrive at the pointwise estimate (47). This completes proof of

Theorem 4.1.



Remark

The k-th convolutional power of the function fcos �tg that occurs in the series (45) is

obtained from the recurrence relation

fcos �tgk+1 = �
1

2 k �

@
2

@�@t
fcos �tgk (k � 1) (59)

For example, letting k = 1; 2; 3; 4 in Eq. (59) we get

fcos �tg2 =

�
t

2

�
cos�t +

sin�t

� t

��
(60)

fcos �tg3 =

(
t
2

2! 22

�
cos �t + 3

sin�t

� t

�)
(61)

fcos �tg4 =

(
t
3

3! 23

��
cos�t + 6

sin�t

� t

�
�

3

�2t2

�
cos �t �

sin�t

� t

��)
(62)

fcos �tg5 =

(
t
4

4! 24

��
cos�t + 10

sin �t

� t

�
�

15

�2t2

�
cos �t �

sin�t

� t

��)
(63)

5. CONCLUSIONS

1. Modeling of transient stress waves in a microperiodic layered elastic semi-space us-
ing RAT amounts to the study of an integro-di�erential equation rather than to that
of a partial di�erential equation.

2. The integro-di�erential equation subject to suitable initial and boundary conditions

may have at most one solution.

3. The stress wave generated by a solution to the integro-di�erential problem may be
represented in the form of a Neumann's series associated with the integro-di�erential
operator.
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