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Abstract. Turbulent flow field calculations for confined coaxial streams are presented. The
cases of turbulent flow in a gradually expanding/contracting conical duct, preceded and
followed by a constant area section, are analyzed. Turbulence is modeled by means of the
standard k-ε model since no strong curvature is of concern. A marching-forward numerical
integration technique is used to sweep the computational domain. Within contractions,
turbulence is damped, whereas in expansions the valued of k is increased. It was also found
that turbulence kinetic energy levels are greater when the internal jet is faster than the
annular stream.
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1. INTRODUCTION

Turbulent jet flow through pipes with varying cross section represents an important class
of engineering flows. Applications of such configurations are found in jet-pumps, rocket
boosters, industrial piping and in air conditioning ducts.

Experimental work published on turbulent coaxial jets deals, in its majority, with sudden
expansion flow into a stagnant surrounding (Buresti et al, 1998) or within a confining duct
(Park & Chen, 1989). Measurements in two-phase systems (Albagli & Levy, 1991, Fan et al,
1996a) and computational studies applying Large Eddy Simulation to coaxial jets are also
found in the literature (Knut & Moin, 1996). In all of the above, recirculating flow due to
abrupt expansion precludes the use of the mathematical treatment below, which, in contrast, is
based on a marching-forward technique (Patankar, 1988).

Yule & Damou, 1992, presented results for confined coaxial turbulent jets with velocity
ratio U1/U2 up to 30, being U1 the central jet velocity. Both streams flowed into a convergent -
divergent channel. Report was limited to mean axial velocity and axial turbulent intensity.
Yet, their overall duct length was of a relative short size (x/D = 4).

The compilation work of Spencer et al, 1995, seems to be the only available experimental
data bank for turbulent flow within contractions and diffusers. Therein, experimental data
from 11 institutions around the world, taken for flow of air and water in contraction and



diffuser, were compared with each other and with computational results using commercial
CFD codes. The authors concluded that: “numerical simulation of turbulent flow through
simple pipe components cannot be achieved with the commercial programs available”.

As a consequence of the above, the development of numerical tools for quick analysis of
simple engineering flows, instead of using complex, memory demanding, large CFD codes,
has motivated many research endeavors lately. If no recirculating motion is of concern (with
mild streamline curvatures), marching-forward numerical techniques, implemented along with
isotropic turbulence models, provide an economical means for engineering analysis with PC-
based workstations.

Following this path, the work of Matsumoto and de Lemos, 1990, presented results for
the developing time-averaged and turbulent fields in a coaxial jet along a circular duct of
constant area. Later, de Lemos and Milan, 1997, extended their calculations to flow in long
ducts with varying cross sections. Recently, de Lemos and Braga, 1998, simulated coaxial jets
with higher (Ue>Ui) and lower (Ue<Ui) annular velocity in diverging (H>0) and converging
(H<0) ducts with a sinusoidal wall. The present contribution applies the developed
methodology to ducts with plane walls. A schematic is shown in figure 1. Also for this
geometry the effects of damping of turbulence in contractions and its enhancement are
diffusers is correctly calculated.

Figure 1 – Notation for general conical ducts with diverging and converging walls.

2. MATHEMATICAL MODEL AND NUMERICS

2.1 Mean flow

The equations of continuity of mass and axial momentum for a two-dimensional, source-
free, low speed, planar/axi-symmetric turbulent mixing layer can be written as,
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In Eq. (1) and Eq. (2) u, v are the velocity components in the axial and transverse
direction, respectively, ρ the fluid density, P the static pressure, and effµ  the coefficient of
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turbulent exchange given as µµµ += teff . Also, µ and µt are the molecular and turbulent

viscosity, respectively. As usual, equations (1) and (2) are written in a compact notation
embracing planar (η=0) and axi-symmetric (η=1) cases.

2.2 Turbulence model

The statistical turbulence model k-ε (Jones and Launder, 1972) has been extensively used
in the literature for its characteristics of robustness and numerical stability. The diffusion-like
character of turbulent transport is mostly responsible for improved stability of the model.
Recent extensions of its applicability to a wide variety of flows include the so-called RNG
and Non-Linear approaches. Basically, the model embodies the early idea of
Prandtl/Kolmogorov that, in a turbulent flow, the apparent viscosity µt can be considered as
proportional to the product of a characteristic velocity scale V' and a characteristic length
scale L'. In the k-ε model, the characteristic velocity scale is given by V'=k1/2, and the
characteristic length scale is written as L'=k3/2/ε. Both scales imply for the turbulent viscosity

ερµ µ /kc = 2
t , where cµ is a constant. Here, only the case involving flow regions of high local

Reynolds numbers, or say, regions with Kolmogorov and macroscopic scales adequately
separated, is considered (Launder and Spalding, 1974). With this, transport equations for k
and ε can be written as,
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In Eq. (3) Γk and Γε are given by ktk +   = σµµΓ ; εε σµµ t+   = Γ  where the σ's are the

turbulent Prandtl/Schmidt numbers for k and ε, respectively. The last terms in Eq. (3) are
known as "source" terms and are given by  )-(P  = S kk ερ and )c Pc( = S 2k1k ερ εε − . The

constants take their usual values, namely c1=1.47, c2=1.92 and cµ=0.09. Further, the

production term reads ( )yU   = P 2
tk ∂∂ρµ .

2.3 Boundary conditions and computational details

The numerical approach here adopted is the well-known parabolic solver technique of
Patankar and Spalding, 1972, and Patankar, 1980. Inlet flow for the central and annular jets
are given a uniform distribution defining the velocity ratio Ui /Ue, where Ui and Ue are the
inlet velocities for the central and annular regions, respectively. The inlet values for k and ε
were assumed as 2U10=k m

-3
in and y/ k 3/2

inin ′Κ=ε  where Um is the overall mean velocity, Κ is

the von Kármán constant (Κ=0.4) and y' is the distance to the wall. Also, for the centerline
(y=0), the symmetry condition was implemented for all dependent variables as ) 0 = y 0=y∂∂φ
where φ=U, k and ε.



2.4 Wall treatment

Wall proximity is handled by the usual Wall Function approach (Launder and Spalding,
1972, Launder and Spalding, 1974), giving for the wall shear stress,
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where E is a constant. In Eq. (4) the subscript "N" identifies the grid point closest to the wall.
In that region, the use of the Wall Function associated with the assumption of "local

equilibrium" for turbulence (Pk=ε) gives ( ) yk = ; c/ = k N
3/2
NNwN Κερτ µ

2
1

. Rewriting Eq. (4)

in the form )( yUw ∂∂= µλτ  gives further,
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2.5 Pressure gradient

Determination of the unknown pressure gradient is handled exactly as explained in
Patankar, 1988. That approach consists basically in finding the "zero" of a function f(dP/dx)
defined as;

( ) ΨEIductcalc A-A =f(dp/dx) (7)

Table 1 – Input data for geometry of Figure 1

Long duct -

Ui/Ue =1
Short duct, y1/D=0.5

Ui/Ue =1.30 Ui/Ue =0.76

Div. Con. Div. Con. Div. Con. 

Limits 

for H/D

+.3 -.3 .3 -.3 .3 -.3

XL/D 100 5

Xc/D 25



where the left hand side represents the discrepancy, at the downstream position, between the
calculated and real duct areas. Solution of Eq. (7) can be achieved with an iterative Newton-
Raphson method of the form;

[ ] 0=)(dp/dx-(dp/dx) ff *** '

+ (8)

where "starred" values are estimated quantities later improved in subsequent iterations.
Typically, 3 to 4 iterations are necessary in solving Eq. (8) at each axial station. It is worth
noting that applicability of the model above is limited to parabolic flow analyses, so that
recirculating motion induced by boundary layer separation in fast diverging ducts or “�vena
contracta” regions after duct constrictions are not considered here. With these restrictions
applied, the axial momentum equation can be solved with well-known marching-forward
numerical techniques for computation of parabolic and partially parabolic flows.

3. RESULTS AND DISCUSSION

The flow field in the duct shown in Fig. 1 was calculated with two sets of input data.
The first one consisted of a long inlet region followed by a converging/diverging duct before
another long outlet sector was calculated. In this case, at entrance, the concentric jets were of
equal value, or say Ui/Ue=1. The objective of this case was to investigate the changes in fully
developed profiles occurring past an area changing section without the simultaneous
hydrodynamic boundary-layer development at the wall. Then, changes in the mean and
turbulent quantities, solely due to duct area variation, could be isolated for analysis. The
second case involves the use of a short tube length before and after a conical wall section.

This short duct case had a small entrance length of XL/D = 5 with jet velocity ratios
Ui/Ue equal to 0.76 and 1.30. This situation was concerned with mixing of streams at different
velocities, embracing velocity rations higher and lower than unity. The former case was aimed
at the analysis of fully developed flow passing by an obstruction or expansion whereas the
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Figure 2- Axial behaviour of k/U*2 for several
radial positions along an expansion.
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latter situation was used to simulate the mixing of streams past ducts with varying cross
section. Either expansion or contraction of the initial duct area was based on a variation up to
30% of the initial duct radius. Data used in all cases are summarized in Table 1.

3.1 Long duct

Calculations for long ducts were discussed in de Lemos and Milan, 1997, and a few
results are here included for clarity. The behavior of turbulence along an area changing
section is shown in Fig. 2 and Fig 3. The figures present the non-dimensional turbulent kinetic
energy along the duct and at different radial positions. It is interesting to note that in the
diverging duct, Fig. 2 indicates that within the flow domain an increase in k/U*2 takes place
across the entire cross section. An opposite trend is shown in Fig. 3. Yet, this change in the
fully developed profiles reaches a maximum value before and around the end of the
diverging/converging section (x/D=125), requiring nearly another 25 to 30 diameters
downstream the flow in order to smooth out the observed streamwise spatial variations. The
results herein confirm also similar computations presented in de Lemos and Braga, 1998, for
ducts with sinusoidal walls. If the centerline behavior for k/U*2 is plotted for –0.3<H/D<0.3 as
in Fig. 4, one can further note the effect of enlargement/contraction on enhancement/damping
of turbulence.

3.2 Short duct

Calculations were then performed in a 25 diameters long diverging/converging section
preceded and followed by a length equal to x/D=5. In the first case, an internal jet with
velocity 30% higher than the concentric external stream (Ui>Ue) was considered. For
comparison, the case of a higher velocity external stream was also computed (Ue/Ui=1.3).

Mean velocity profiles are presented in Fig. 5 and Fig. 6 for Ui/Ue=1.3. Relative
deceleration of the central flow (reduction of u/Um) in Fig. 6 is much stronger than in Fig. 5.
Stronger flattening of the velocity profile in converging ducts may suggest the use of this
geometry for quickly mixing coaxial jets with higher inner velocity.

The behavior of corresponding turbulent fields is shown in Fig. 7 and Fig. 8. The steep
velocity gradient at the duct entrance promotes turbulence production increasing the level of
k within the mixing layer. Later downstream, this energy level is dissipated by diffusion to the
center and wall regions. In Fig. 7, most k values lie above those at the initial position x/D=5.

On the other hand, in Fig. 8, calculated k profiles are equal or lower than the initial
position values (at x/D=5). Therefore, enhanced turbulence energy within diverging ducts as
well as damped turbulence in a contraction are clearly seen in the figures.

Similar results are presented when the external jet velocity is higher than the internal one.
Fig. 9 and Fig. 10 show mean velocity profiles whereas Fig. 11 and Fig. 12 present turbulent
parameters. The double humped profiles in Fig. 9 and Fig.10, not presented in Fig. 5 and Fig.
6, evolve to a bulged form in expansions and to a flatter distribution in contractions. In Fig. 9
and Fig. 10 mean velocity gradients, in most of the duct, are lower than those when Ui is
higher than Ue. This is seen by comparing corresponding Figs. 5-6 with Figs. 9-10.

Consequently, overall k levels, when Ue>Ui , are expected to be lower than those of Fig.
7 and Fig. 8. Accordingly, this is confirmed when inspecting both sets of Figs. 7-8 and Figs.
11-12. Also seen, when comparing Figs. 8 and 12, is that damping of turbulence is more
effective when Ue is greater than Ui. In a similar manner, enhancement of k in Fig. 7 is more
pronounced than in Fig. 11, showing that jet flows with Ui>Ue  are preferable when mixtures
with high turbulent intensities are sought. Additional comments on the influence of U profiles
on the overall value of k are presented below.



Figure 11 and Fig. 14 compare the
centerline development of  k/U*2 for the
mixing of streams in different channels and
with different inlet velocity ratios. Fig. 11
(Ui>Ue) indicates that in this radial
position, a reduction on the level of the
turbulent kinetic energy in the converging
duct occurs due to the relative retardation
of the core velocity causing a flatter U
profile at the center and, consequently, a
lower level of k. The mean field acquires
more kinetic energy but a lower fraction is
made available for generating turbulence.

 On the other hand, in the expanding
duct, retardation of wall fluid  layers
increases k production rate at the center
and, although the mean flow kinetic energy
is reduced - by transformation of kinetic on
pressure energy during duct enlargement -

a higher percentage is turned into turbulence by the action of the steep gradients occurring
within the flow.

Figure 14, for Ue>Ui, also presents higher values at the centerline for k in diverging
geometries. However, in this figure, the overall turbulence level is lower  than those presented
in Fig. 11. By comparing Fig. 5 and Fig. 9 one can see that within the region 0.3<y/R<0.6,
gradients in the double humped u/Um profile Fig. 9, responsible for k production, undergo a
change in sign.  On the other hand, in Fig. 5, the higher velocity in the bulk of the flow tend to
keep reasonable gradients of mean velocity along all duct. Levels of k are then higher when
the internal jet is faster than the external stream. Later, at the duct exit and after most mixing
has occurred (x/D=35), both cases present similar values for k, independent of the incoming
jet configuration.
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Figure 4 – Turbulent kinetic energy along
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4. CONCLUDING REMARKS

This paper presented computations with the k-ε model for simulation of confined jet flow
in ducts of varying cross-section. Diverging and converging plane ducts were calculated
showing different behavior for the mean and turbulent fields. In general, accelerated flows in
a convergent duct reduce turbulence level, eventually leading to laminarization of the flow
(Jones and Launder, 1972). Flattening of the velocity profile in converging ducts may suggest
the use of this geometry for rapidly mixing coaxial jets with a higher internal velocity.  Based
on the foregoing, it is expected that the results herein can contribute to the design and analysis
of engineering equipment involving concentric turbulent ducts. Potential application may also
include fluid machinery development.
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