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Abstract. This work presents an original algorithm using a numerical solution scheme of a
physical model representing the thermal-hydraulic behavior of an industrial plant. This
model is described by one direction equation in the preferred flow direction. A
homogeneous fluid slip model in thermal dynamic equilibrium is assured. The algorithm
presents a totally implicit and iterative scheme in time, when no reverse flow occurs. It is
recurrent in space, producing a marching algorithm in space. Results are presented for two
test cases. The first one was compared to RELAP5/MOD3.2 results. The second case was
compared to an analytical solution. Both results showed low absolute errors, no numerical
diffusion an real time processing.
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1. INTRODUCTION

          The development of codes for thermal-hydraulic analysis of industrial plants is of
paramount importance, primarily to assist safety analysis and to simulate physical process,
thus allowing a better operational performance of the system. These codes generate
thermal-hydraulics parameters of fluid flow from the solution of mathematical equations
which describe the physical model representing the process to be simulated. These



parameters must be as close as possible to the desired result. Solution of these equations in
differential form requires a great deal of computational effort, usually not compatible to the
purpose of real time simulations. In view of this, numerical solution schemes have been
proposed, that guarantee stability and convergence, reducing as much as possible numerical
diffusion. Given the large effort in the development of computational tools and of
numerical analysis methods, various thermal-hydraulic analysis codes have recently been
made, showing new solution methods.
          This work presents the numerical scheme of a new computational algorithm, which
was motivated by the development of a code that would generate precise results in real
time, as described in Lapa (1998).
          The method presents, as an original characteristics, a numerical scheme fully implicit
and iterative in time, as long as reverse flow does not occur, and recurrent in space. That is
to say, cell parameters are calculated as a function of the previous cell, where they are
already known, establishing a marching algorithm in space. This peculiarity warrants
convergence and fast computation.

2. THE PHYSICAL MODEL

2.1  Homogeneous model with slip

          We have adopted the homogeneous slip model in this work. This model assumes that
liquid and vapor phases flow independently, with constant average velocities, not
necessarily equal. It was assumes thermodynamic equilibrium between phases, although a
simulation which relaxes this hypothesis has been presented by Singhal & Srikantiah
(1991).
          The slip velocity is obtained via algebraic equations expressed in terms of the relative
velocity, which depends on empirically obtained factor. In this work, relative velocity is
obtained by the drift mode, as described in Delhaye et al. (1981).
          This model has the advantage of working with only three equations and yet produce
satisfactory results. The modeling of the physical problem starts with one dimensional
equations in the direction of preferential flow, as detailed below.

2.2 Local balance equations

          The equations derived from the model are detailed in Lapa (1998). We note that this
model assumes thermodynamic equilibrium and because of that, terms that represent
volume changes are neglected, a valid assumption for moderate compressible process with
subsonic velocities.

a) Mass conservation equation
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b) Energy conservation equation
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c) Momentum conservation equation
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The following relations apply to Eqs. (1-3):
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α̂   •  void fraction,            �
~
u

R
•  slip velocity,        index : v •  vapor,    l  •  liquid.

          The following simplifications are assumed: preferential flow directions, average
values for areas and volumes of scalar quantities.
          These local equations are substituted by equations with only one dimensional
dependence, on the preferential hydraulic direction of flow and these equations are then
spatially integrated using the classical Divergence Theorem. The plant is then divided in to
components and the spatial integration takes into account the geometric configuration of the
plant. The one dimensional equations are valid on a local basis, to the right or to the left of
the points of singularities (which indicate presence of a valve or pump), as described below.

2.3 Spatially integrated equations taking into account the presence of singularities

          These equations present products of variables which must then be linearized, e. g.,
state equations. Linearization is performed using Taylor Series Expansion to first order, as
shown in Lapa (1998). Index k means time step and index n indicates internal iteration for
each time step, in case this iteration is derived.

        
Figure 1 – representation of three consecutive components, each having one input/output

(centered mesh)



a) Mass conservation equation
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jG = ),( jjj PHG  is the term that accounts for the possible leaks in component j. This term

is obtained via empirical relations as shown in Mc Fadden et al (1998).
Vj → volume of component  j.

b) Energy conservation equation
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c) Momentum conservation equation

The concept of staggered mesh applied to the momentum conservation equation was
reformulated in order to include the component ahead of the component being analysed.
This idea can be better explained by referring to figure 2.

                               
Figure 2 – component with only one input and one output

The momentum conservation equation becomes:
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where the real number le,β  was introduced as an optimization parameter, in order to the

marching matrix be as well conditioned as possible.
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          Note that the term T∆  in the denominator of the expression for the input flow of
component “l” ( leW , ), is identical to the output flow rate of component “j” ( jsW , ).

Numerical results were obtained supposing a le,β  value in the range 1 - 2, in such a way

that, depending on the flow conditions in the previous time step, the coefficient in jsW ,  be

greater than the coefficient in isW , . The value le,β = 1,5 gave the best results for the tests

done. Determination of  β optimum will be done in future work.

3.   PROPOSED ALGORITHM

3.1  Marching scheme on hydraulic segment

          One can observe that the output variables of the component “i”, preceding the
component being analysed are identical, that is: 1,1

,
1,1
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          Once the balance equations are deduced for a node j, one can make a matrix
representation for this node as follows:
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It is possible to eliminate the flow rate 1,1
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          The system described by Eq. (11) is a 4x4 system, where each line represents,
respectively, equation of mass conservation, energy conservation, momentum conservation
and continuity of mass flow rates at component interfaces. This system leads to a marching
scheme, once the terms associated with previous component are known. But this does not
happen. In this form, the equations for conservation of mass, energy and momentum are
linearized and the pressure associated with next component is taken at previous time step,
as it happens also to the output flow rate of the same component. This loss of implicit
character of the algorithm is regained by iterating on the linearized equations, and the
starting values of previous time step. This assures that the starting point is as close as
possible of the real value. With the iteration matrix being fixed during iteration for each
fixed “n”, the system can be represented by:

  [ ] [ ] nkknk
je

nk
j

nk
j

nk
js

knk
je

nk
j

nk
j

nk
js

k
bbWPHWcolBWPHWcolA ,1,1

~

,0

~

,1
1,

,1
1

,1
1

,1
1,

,1
,

,1,1,1
,

++
−

+
−

+
−

+
−

++++ ++=   (12)

          When there is no reverse flow, the scheme is totally implicit. When reversion of flow
occurs, stability is lost and a Courant number based time step control is triggered. Also,
when the iterative process used to recover implicitness is diverging, the time step is halved
and the whole process is reinitialized for a new time step.
          Via system triangularization, vector nk

jX ,1+  is made explicit, and one associates cell

“i” to “j-1”.  Then, considering two consecutive cells “j” and “j+1”, one has:
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Figure 3 – hydraulic segment starting at node “NI” ending at node “NT”



          The hydraulic segment represented in figure 3 is subdivided into components,
numbered in sequential order. The starting segment is node component 1.
          Thus, the system represented by Eq. (13), when applied to cell 1, becomes:
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          Once the conditions at node N1 are known, which is treated as implicit, and applying
the previous equation for  j = 1, one has:
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and the independent terms given by:
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          The described system has the characteristic of being implicit with respect to
integration in time and also has the peculiarity of obtaining the information associated with
the component “j”, referred to previous component “i”, at the same time step level of
integration. This fact makes the marching scheme unique and accounts for its fast
performance in obtaining the solution of the system.
          Matrix 1+jD  contains the variations in the thermal-hydraulic parameters, between a

given control volume and the next one. Applying this fact successively, one obtains a
recurrence relation, Eq. (15), which allows generating nm

jC , .  This matrix contains the

relationship among successive components and so, the variables of interest for each cell of
the hydraulic segment become functions of the starting node, which is implicitly treated.
One should note that this matrix is calculated only once for each iteration, thus reducing
drastically the calculation time and each iteration is “activated” to regain the implicit
character of the method.



          This “implicitness” of the scheme is only lost when reverse flow occurs at the output
of the component of interest, as explained above, in view of the donor cell concept used in
the energy equation. In this case the donor component becomes the next component to the
component of interest, and variables yet to be known appear in the equations, which forces
values of these variables at previous time step values to be taken, in order to avoid iteration.
          To solve this problem, considering the system as linearized, one applies the principle
of superposition.

4. NUMERICAL EXPERIMENTS AND RESULTS

Plant number 1 – This loop contains a pump and a valve, which are considered as
singularities in the horizontal plan.

                      
Figure 4 – plant number 1

a) Operational condition data

 - nominal flow rate = 40,0 Kg/s
 - nominal temperature = 240,0 oC
 - nominal pressure = 1,20E+07 N/m2

- pump transient: pump suffers a motor torque change in 5,0s. This change can be described
by a first order polynomial
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with  A = -20,0 s-1

Results for this case were compared to results from RELAP5/MOD3.2, as shown in
Fig. 5.



b) Results for • t = 0,1s and 100 time steps (machine = 586DX / 166Hz / 64 Mb RAM)

•    - NEW ALGORITHM (solution generation time = 9 s)
•  - RELAP5/MOD3.2 (solution generation time = 140 s)

Figure 5 – power transient in plant number 1

Plant number 2 •  open circuit, with 6 nodes, 3 pumps, 3 valves and 2 internal loops, as
follows, in horizontal plan. The pump number 2 is closed. This case was chosen because an
analytical solution is available for comparisons.

            
Figure 6 – plant number 2

a) Operational condition data

- nominal flow rate = 80 Kg/s
- nominal temperature = 270,0 oC
- nominal pressure = 1,45E+07 N/m2

- pressure loss coefficient of node 2 output s1 =  3,0
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Table 1 – plant number 2 results showing accuracy of the

component output flow rate (kg/s)
• t = 0,1s

output flow rate (kg/s)
• t = 0,01s

Output 1 of node 2 39,998455 39,998533

Output 2 of node 2 40,001680 40,001608

Output of node 5
(output of internal loop)

80,000000 80,000047

4.   CONCLUSION

          This new algorithm presents an original methodology to solve a complex thermal-
hydraulic system. Its main characteristics are accuracy and fast solution generation, since
the number of mathematical operation is much smaller than of other known algorithm. This
allows development of real time simulators, with accuracy  comparable  to design codes.
          The numerical results of plant number 1 were compared with the RELAP5/MOD3.2
code, confirming the accuracy of the scheme here proposed, as well as the fast solution
generation. The numerical results of plant number 2 when compared with the exact
analytical solution, obtained similar accuracy.
          The novelty associated to the momentum equation, β weighting factor, introduces
additional flexibility to be explored.

5.    SUGGESTION FOR FUTURE WORK

          Extend the model to treat two phase flow with the 6 equation model to develop a
complete thermal-hydraulic analysis code for industrial plants.
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