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Abstract. A technique developed for statistical analysis of complex controlled dynamical
systems operating in presence of random disturbances is presented in this paper. The main
peculiarity of the technique consists in the estimation not only moments (mean, variance,
covariance) of output variables but also the probability and the quantile as system accuracy
criteria. Use of that criteria allows to utilize more convenient (in comparison with traditional
ones) system performance characteristics, as well as to reduce computation time, necessary
for solving the problem by the Monte Carlo simulation method.
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1. INTRODUCTION

A satellite is one of example of high precise dynamical system. It should be inserted into
an orbit with high accuracy. This accuracy has to be provided by a launcher controlled motion
in presence of numerous random factors: initial conditions, vehicle parameters, and external
disturbances acting upon a vehicle during a flight. Impact of those random factors is evaluated
using priory statistical analysis methods. Usually covariance analysis is conducted providing
estimation of moments (mean, variances and covariance moments) of state variables of a
vehicle along a trajectory using analytical methods or the Monte Carlo simulation approach
[Malyshev at all, 1996]. But in many cases it is practically useful to evaluate probability of an
event, that a state vector or its some components are within a given (admissible) area, or a
size of the area, within which considered state variables are with given probability (quantile).
Evaluation of a probability and (or) quantile is called as a probabilistic analysis of a system
[Malyshev, Kibzun, 1987]. A purpose of this paper is presentation of a technique developed
for effective solution of a probabilistic analysis problem more convenient and less time
consuming in comparison with existing techniques. The technique description is given here in
application to a VLS-type solid-propellant launch vehicle intended for satellite injection into
the circular orbit.



2. PROBLEM STATEMENT OF A PROBABILISTIC ANALYSIS

A general problem of a probabilistic analysis of a dynamic system is presented in
application to a launch vehicle trajectory analysis. A probabilistic analysis of a launcher
motion is performed here in respect to current position, current velocity and terminal accuracy
of a satellite insertion into an orbit.

Probabilistic analysis of a launcher 3D current position. A sphere as an admissible area
for current deviations of launcher coordinates from nominal ones is considered. A module of
a vehicle deviation from nominal position in 3D motion at a current moment t can be
characterized by the scalar variable )(1 tÔ :
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where )(,)(),( tztytx nnn  are coordinates of a launcher at a nominal trajectory. The variable

)(1 tÔ is random function of time due to random disturbances acting upon a vehicle. The
probabilistic analysis of a launcher current position consists in a determination of a
probability � �,)(P 11 ��� t  where 1�  is an admissible level of the position accuracy.

Probabilistic analysis of a launcher current velocity. A sphere as an admissible area for
current deviations of launcher velocity components from nominal ones also can be
considered. A velocity vector deviation from nominal can be described by the scalar variable

)(2 tÔ :
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where )(),(),(    tVtVtV znynxn  are components of a launcher current velocity along the nominal

trajectory.
By analogy with the previous case, the objective of a probabilistic analysis of a launcher

current velocity is a determination of a probability � �,)(P 22 ��� t where 2�  is admissible

value of a disturbed velocity vector deviation from nominal one.

Probabilistic analysis of a terminal accuracy for a satellite insertion into orbit.  As an
example, let us consider a preset admissible terminal 3D area in coordinates: apogee, perigee
and inclination of a satellite orbit. In respect to that variables final random state of a launcher
and simultaneously orbit of a satellite can be described by the variable )(3 TÔ . That variable is

characterized by the following properties: )(3 TÔ = 0, if the satellite is on the nominal orbit

and )(3 TÔ = 1, if the satellite state vector is on the border of the admissible area. The

inequality 0 < )(3 TÔ < 1 takes place inside of the admissible area. The variable )(3 TÔ  is

random variable due to random disturbances. The probabilistic analysis of the terminal
accuracy consists in determination of a probability � �1)(3 �tÔP .

Generalizing for all three cases mentioned above, the probabilistic analysis of launcher
motion has as an aim to determine the probabilities:

� � 3,1 ,)()( ��� itÔPtP iii �j , (3)



where 3,1, �ii�  are preset values of scalar performance indexes )(ti� .

Additionally to the direct probabilistic problem described above, it will be discussed the
inverse probabilistic problems in which a preset level of probability �  is supposed, i.e. the
inequality �

j
�� )(ti  has to be satisfied. In this case it is necessary to determine minimum

value of a parameter i�  (quantile), with which mentioned inequality is valid. In another

words the inverse problem is a problem of the evaluation of the best accuracy provided with a
preset probability. Mathematically the quantile determination problem is formulated as
follows:

� � .3,1 ,)(:min)( ��� itPtÔ
ii ��

ja
(4)

Main phases of a technique for solving the direct and inverse probabilistic analysis
problems are presented below.

3. MATHEMATICAL MODEL FOR LAUNCHER

A mathematical model of a launcher motion in presence of random disturbances has to be
written in the Cauchy form:

),,,( tzfz ��� ,)0( 0zz � (5)

where ),,,,,( zyxVVVcolz zyx�  is a state vector, � �N��� ,...,col= 1  is vector of dimension

N, consisting off all disturbances – random variables acting upon a launcher during a flight.
Formally, the following differential equations can be written for components of that vector:

.,1  ,0 Nii ���� (6)

Jointly Eq. (5) and (6) form the augmented system:
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or in the vector form:
),( tzfz �� , 0=)0( zz , (8)

where  z = col( �,z ) is an augmented state vector of a system.

4. LINEARIZATION

Further, linearized equations of disturbed motion of a vehicle are used. An ordinary
linearization and a statistical linearization are used. The first one  (ordinary linearization) is
utilized in respect to “smooth” nonlinear functions of a system and the second one – in respect
to “substantial” nonlinear functions.

Let )(~ tz  is a state vector consisting of state variables of a launcher mass center position

X, Y, Z and velocity zyx VVV ,,  and vector � �NS ��� ,...,col=~ , consisting of random



parameters, in respect to which nonlinear functions in the system (8) are “smooth”. The vector
)(~ tz  is described by the equation:

),~(
~~ tzfz �� , 0

~=)0(~ zz . (9)

The right part of Eq (9) can be represented as Taylor’s series in a vicinity of a nominal
trajectory. Let )(~ tzn  is a state vector along a nominal trajectory. The following linear

equation describes behavior of the deviation state vector )(~)(~)(~ tztztz n��� :
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the linearized mathematical model of a launcher disturbed motion is as follows:
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5. STATISTICAL LINEARIZATION

More accurate solution can be provided using statistical linearization technique for

“substantial” random disturbances Sii ,1, ��  in the right part of Eq. (8). One of these type

disturbances is a step change of a vehicle mass during a stage separation.
The statistical linearization method of the nonlinear function � �,)()( zfzzff ijiij �����

consists in its approximate replacement by a linear function jij za � , which is statistically

equal to initial function (Malyshev, Kibzun, 1987):

][][ jijij zaDfD ��� (13)

and

� � � �jijij zaMfM ��� , (14)

where )(if  is i-th element of the vector function )(f ; jz�  is j-th component of the vector z

variation due to random disturbances.
The coefficient ija  is estimated using the formula:
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The following expression can be used for the approximate integral calculation in Eq.
(15):
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where kP  are weighting coefficients.

An additional multiplier, that takes into account a sign of a coefficient, is introduced.
Then
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In the specific case, when � �jzD �  = 1 the coefficient is equal to:
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6. AUGMENTED LINEARIZED MODEL

A generalized linearized mathematical model for a disturbed motion of a launcher using
both an ordinary linearized model (12) and a statistical linearized model (18) can be written:

.)0( ),()()( 0zztztAtz ������� (19)

Here A(t) is a matrix with elements NjNiaij ���� 6,1,6,1, . The elements

Sjiaij ��� 6,7,6,1,  are calculated by (18) and 6,1,6,1,~ ��� jiaa ijij ,

SNjiaa ijji �����
+

6,7,6,1,~
4, , NjNiaij ����� 6,1,6,7,0 , where

SNjiaij ���� 6,1,6,1,~  are elements of matrix ).(
~

tA

7. COVARIANCE ANALYSIS

The purpose of covariance analysis is to determine a covariance matrix )(tK zD  of a
vector )(tz� .



According to the formed model of a disturbed motion the elements iik , Ni �� 6,7  of

covariance matrix )(tK zD are equal to 1. Other elements of the matrix are equal to zero in the
initial time instant.  A mean value and a covariance matrix of a vector )(tz�  are calculated by
moment’s equations [Malyshev at all, 1996]:

	


�

��

�

DDD

DD

)()(

,)(

tAKKtAK

mtAm
T

zzz

zz
�

�

. (20)

Calculation results obtained using moment’s equations for 4-stage launch vehicle were
proved using the Monte Carlo simulation technique in application to the Eq. (8). The
covariance matrices obtained by both methods are coincided with an acceptable for practical
purpose accuracy. But computation time the Monte Carlo simulation is several time greater
then the one for the moments equation solution due to the necessity of hundreds launcher
motion trajectories simulation.

8. PROBABILISTIC ANALYSIS

Let us consider the probabilistic analysis problem in application to current position and
velocity of a vehicle.

Firstly, relationship between the correlation matrix )(tK zD and the criterion functions

)(1 tÔ and )(2 tÔ has to be determined.

The function )(1 tÔ  can be represented as ),()( 31
11 tÔtÔ �� , where 3�  - is the standard

Gaussian vector with elements 3,1,)1,0(3 � iNi� .

The function )(2 tÔ  can be represented similarly as ),()( 31
22 tÔtÔ �� .

Then the probability analysis problem in respect to a disturbed motion trajectory consists
in estimation of the probabilities:

� � 2,1 ,)(:)( 313 ���� itÔtP ii
i

���j , (21)

� � 2,1 ,)(:min)( ��� itPtÔ
ii i �� ja . (22)

A direct solution of these problems requires significant computational time. The
confidential approach can be suggested for the probabilistic problem solution to reduce of
these expenditures.

The problem Eq. (22) is replaced by the equivalent optimization problem (Malyshev,
Kibzun, 1987):
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and by the problem
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The problem Eq. (21) is replaced by the equivalent optimization problems:
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The algorithm of the directed integration of probability density (Malyshev, Kibzun, 1987)
is used for the quantile )(tÔ

ia
 calculation. The algorithm of a directed integration of a

probability density also is used for calculation of a probability )(tP
ij

.

9. ANALYSIS OF SATELLITE INJECTION ACCURACY

In  the probabilistic analysis problem of satellite injection accuracy into an orbit it is
necessary to calculate probability and quantile as functions of covariance matrix )(TK zD  at

the terminal time moment T. The function )(3 TÔ  can be represented as ),()( 61
33 TÔTÔ �� ,

where 6�  is a standard Gauss vector with elements 6,1 ),1,0( � iNi� . This function is non-

linear function of the random vector 6� .
The probabilistic analysis problems can be represented as follows:
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Solving of these problems requires to significant computational time. Using the
confidential approach allows  reducing that time substantially.

The problem Eq. (28) is replaced by the equivalent optimization problem:
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and by the problem:
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and the problem Eq. (27) is replaced by the equivalent optimization problems:
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The adaptive Monte-Carlo algorithms are used for the quantile )(3 TÔa  and the

probability )(
3

TPj  evaluation.

10. NUMERICAL EXAMPLE

Some numerical results of a probabilistic analysis problem solution are presented in this
section.

Quantile and probability of absolute deviations of both velocities and coordinates
calculated using the covariance matrixes for along a nominal trajectory are shown in the Fig.
1.

The following characteristic parts in this plot can be selected:
Part AB - the flight with mid-flight thrust of a first stage. The quantile is increased due to

effect of random errors of a motor thrust realization as well as due to random errors in
aerodynamic characteristics of a vehicle, a random wind in an atmosphere and an atmosphere
density;

Part BC – a burning out of a first stage motors. The quantile is decreased because motors
are switched off earlier in a case of the greater mid-flight thrust and are switched off later in a
case of the smaller mid-flight thrust;

Part CD – the first stage separation. The quantile is increased; the first stage separation
event is connected to actual time of first stage motors switching off as well as because the
second stage ignition moment is scheduled depending an actual time of the first stage
switching off moment;

Part DE - the flight with mid-flight thrust of a second stage, the quantile is increased due
to the reasons similar to the characteristic for the part AB;

Part EF - the second stage motor burning-out, quantile is decreased due to reasons,
characteristic to the part BC;

Part FG – the second stage separation, quantile is increased due to reasons similar to ones
characteristic for the part CD;

Part GH - the flight with mid-flight thrust of the third stage, quantile is increased due to
the motor thrust realization errors;

Part HI - the third stage motor  burning-out. The quantile is decreased for the reasons
similar to the mentioned above for the part BC;

Part IJ – free flight. The quantile is increased due to random initial condition at start
moment of this part of a flight;

Part JK - the flight with a mid-flight thrust of the fourth stage, The quantile is increased
due to motor thrust realization errors;

Part KL - the fourth stage solid propellant motor burning out. The quantile is decreased;
because of the motor is switched off earlier in a case of the greater mid-flight thrust, the motor
switched off later in a case of the smaller mid-flight thrust, resulting in partial compensation
of deviations.

The quantile of module of a vehicle position deviation from nominal along a trajectory is
shown in Fig. 2. It can be seen that this quantile function has the increasing in character.
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The quantile and probability of satellite injection into the orbit calculated utilizing
terminal correlation matrixes with use of adaptive algorithm of a Monte-Carlo method are
given in Table1.

Table 1. Values of quintiles and probabilities for a satellite insertion errors

Disturbances
Quantile of the

order
� =0.99

Probability of
the level
� =1

Thrust of the first stage motors 0,318 0,9989
Thrust of the fourth stage and spin-up motors 0,432 0,9983
Thrust of the first, second and third stage motors 0,723 0,9979
Thrust of the first and second stage motors 0,516 0,9984
Atmosphere density 0,048 0,9999
Wind 0,051 0,9999
Atmosphere density and wind 0,086 0,9999
Aerodynamic characteristics 0,126 0,9999
Atmosphere density, aerodynamic characteristics and
wind

0,195 0,9999

Thrust of the first, second, third and fourth stages and
spin-up motors

0,811 0,9975

Total for all disturbances 0,862 0,997

As it can be seen from the Table 1, the probability of satellite injection into the orbit in
presence of all disturbances is equal to 0,997, and quantile of a level 0,99 is equal to 0,862.

11. CONCLUSION

The following results are presented in this paper:
1. The new numerical technique of launcher probabilistic analysis is offered. This

technique based on confidential approach, joint use of ordinary and statistical linearization
method and moment’s equations.

2. Using of the directed integration of probability density algorithm allows decreasing the
computational expenditures in 500 times in comparison with standard integration of
probability density. The adaptive Monte-Carlo algorithm allows decreasing the computation
expenditures in 2,5 times in comparison with the standard Monte-Carlo algorithm.

3. The quantile and probability of absolute deviations of both velocity and position of a
vehicle and the quantile and probability of satellite injection into the orbit were calculated.
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