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Abstract. A new set of self-similar solutions of a compressible laminar boundary layer is used
for air as perfect gas and where the viscosity is a power function of temperature. Modified
Levy-Mangler and Dorodnitsyn-Howarth transformations are presented to solve the flow in a
thin laminar boundary layer with no external pressure gradients on a smooth flat plate. This
result in an explicit relation between the stream function and the enthalpy fields described by a
closed-coupled system of nonlinear ordinary differential equations. In the present work,
boundary layer flows with external Mach numbers 4 and 10 over in adiabatic wall are studied.
The present solution methodology provides a straightforward way of comparing results using
the viscosity-temperature linear relation, Sutherland law, and the relation according to the
kinetic theory. Also, the results may provide important data needed for the design of future
hypersonic vehicles.
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1. INTRODUCTION

Supersonic and hypersonic flows with low enthalpy conditions can be considered and
may be modeled by a calorically or thermally perfect gas equation of state. In a calorically
perfect gas the specific heats, cp and cv, are considered as constant. A thermally perfect gas is
one in which the specific heats are functions of temperature only. This is a result of the
vibrational energy within the gas molecules and the electronic energy associated with the
electron motion within the atoms or molecules. In the more general case of a purely



compressible gas at thermodynamic equilibrium, the specific heats are functions of two
thermodynamic properties, for example pressure and temperature. An equation of state for real
gases should be used in such cases. This relation may be applied in high enthalpy flows where
dissociation and ionization occur.

A hypersonic flow over a flat plate can be divided into four distinct regions, Figure 1.

Figure 1.Flowfield on a flat plate at hypersonic flow

Near the plate leading edge, there exists a delay in the formation of the shock layer and
the boundary layer as a result of the slip phenomena in this region (Nagamatsu and Sheer,
1960). Close to the leading edge, region I, the slip condition is stated and the flow is not
continuum, so that the Navier-Stokes equations are not valid, and the first order kinetic flow
theory should be applied (Nagamatsu and Li, 1960).

Immediately after the noncontinuum region, there exists a strong interaction continuum
region, where the shock layer and the boundary layer are merged and the no-slip condition
prevails at the surface of the plate, region II. In this region, the pressure gradient in the y-

direction may be ignored, 
∂
∂
p

y
= 0, but the pressure gradient in the x-direction can not be

neglected, due to the presence of the shock wave inside the viscous layer.
Far from the leading edge region, a weaker interaction region may be found. In this

region, which is close to the strong interaction (region III) the pressure gradient in the x- and
y-directions inside the boundary layer are very small and may be ignored. However, outside the
boundary layer, in the inviscid layer between the shock wave and the boundary layer, the
pressure gradient in the y-direction can not be neglected.

Downstream of the strong interaction region, in region IV, the classical approach of
Prandtl incompressible boundary layer theory can be applied to the compressible boundary
layer. In this region the pressure gradients in the x- and y-directions may be neglected, both
inside as well as outside the boundary layer.

Van Driest (1952) used the Crocco’s method and derived a set of ordinary differential
equations to describe the compressible laminar boundary layer. He studied flows with Mach
numbers up to 25 on a flat plate assuming a perfect gas obeying Sutherland viscosity law. The
main results presented are the skin-friction and heat-transfer coefficients as function of
Reynolds number, Mach number and wall-to-free stream temperature ratio.

Cohen and Reshotko (1957) studied self-similar solutions for a two-dimensional steady
compressible laminar boundary layer with heat transfer and pressure gradients. They used the
perfect gas assumption, with a unit Prandtl number and a linear viscosity-temperature relation
across the boundary layer.

Mirels (1955) studied the shock wave as it advances into a stationary fluid bounded by
a wall. A boundary-layer flow is established along the wall behind the shock. He employed a
Blasius equation to solve the heat transfer behind the shock wave, with a modified boundary
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wall and the velocity outside the boundary layer, respectively. He stated that with increasing
the Reynolds numbers, the laminar boundary layer behind the shock wave becomes unstable
and the transition to turbulent flow occurs.

Toro et al. (1997) have recently developed new self-similar solutions for a compressible
laminar boundary layers over a flat plate with the constant wall temperature boundary
condition. The influence of the fluid Prandtl number, wall to free-stream temperature ratio, and
the power of the viscosity-temperature law for supersonic flows with external Mach numbers
up to 4 have been investigated.

The purpose of this work is to apply the new methodology of Toro et al. (1997) to
study self-similar supersonic and hypersonic compressible laminar boundary layers over in
adiabatic wall boundary condition. The work is limited to low enthalpy flows, where the
dissociation phenomena is not present, and where the viscosity is a power function of the
temperature.

2. MATHEMATICAL MODEL

A steady compressible flow of a viscous, heat conducting, Newtonian fluid is
considered. For this flow at the limiting case of a high Reynolds number, or a small dynamic
viscosity, the Navier-Stokes equations may be simplified to the classical Prandtl laminar
boundary layer. Following Van Driest (1952), the steady, compressible, viscous, thin boundary
layer, with two-dimensional flow, and zero pressure gradients in the x- and y-directions, over a
smooth flat plate may be described by the following conservative equations:
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Here, ρ is the flow density, p is the pressure, p=const., (u, v) are the axial and transverse

velocity components, µ is the viscosity, Pr is the Prandtl number, Pr =
µc

k
p

, cp is the gas

specific heat coefficient, k is the gas thermal conductivity, and i is the specific enthalpy.
The boundary conditions needed to solve the problem are no penetration and no slip

condition on an adiabatic wall (at y = 0 , x ≥ 0) and the free stream conditions as y → ∞ :

u x( , )0 0= , v x( , )0 0= , 0(x,0)
y

i =
∂
∂

, u x u( , )∞ = ∞ , i x i( , )∞ = ∞ . (4)

We assume a power law for the viscosity change as function of temperature given by
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Here µr and Tr are reference viscosity and temperature, respectively, and α is a given power.

3. SELF-SIMILAR SOLUTION

We seek self-similar solutions of equations (1) - (5). The boundary layer equations may
be reduced to self-similar solutions by introducing a modified change of variables that
combines the Levy and Mangler and the Dorodnitsyn-Howarth transformations, and the power
α that accounts for the variation of viscosity with temperature. Let:
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The stream function ψ( , )x y  is defined by
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We assume a self-similar relation:

( )ψ η ν η( , )x u xfw= ∞2 ,
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Replacing equations (6) - (8) into the momentum and energy equations, we obtain the
self-similar compressible boundary layers given by:
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Here M
u

a∞
∞

∞
=  is the Mach number of the external flow. The boundary conditions (4) result

in:

( )f 0 0= , ( )f ' 0 0= , ( ) ( )1
w'f −α−θ=∞ , ( ) 00' =θ , ( ) 1=∞θ . (11)

For more detail of this theoretical approach see Toro et al. (1997). Toro et al. (1997)
also presented results for various hot and cold walls with Mach numbers of external flow up to
4, with the constant wall temperature boundary condition.



( )f 0 0= , ( )f ' 0 0= , ( ) ( )f w' ∞ = − −θ α 1 , ( )θ θ0 = w , ( )θ ∞ =1. (12)

The system (9), (10) and (11) is a system of nonlinear ordinary differential equations
that explicitly describes the relations between the stream function and the temperature fields,
for the adiabatic wall case, while the system (9), (10) and (12) for the constant wall
temperature case. Due to the compressibility effects, density is used here as a variable. The
momentum equation in the x-direction (9) and the energy equation (10) are coupled by
enthalpy θ, as one would expect. For the special case where viscosity changes as a linear
function of temperature (i.e., α=1), the compressible laminar boundary layer represented by
Blasius and Pohlhausen equations are recovered.

4. RESULTS

The system of equations (9), (10) and (11) or (12) may now be used to study the
behavior of self-similar compressible boundary layers. This system is solved by a standard
Runge-Kutta fourth order integration technique using MATLAB. There are four parameters
that affect the solution: the Mach number of the external flow, M ∞ ; the temperature ratio, θw;

the Prandtl number, Pr; and the power α of the viscosity-temperature relation. Only the
external flow Mach number influence will be presented.

Figure 2 displays the variation of viscosity-temperature law at pressures between 0.1
and 1 atmosphere. Note that α=0.69 matches the numerical real gas values of Brower (1990)
better than the other powers for a wide range of temperatures, up to 3000 K. The power
α=0.76 is a typical value used for air at relatively low temperatures, less than 1000 K. Also,
notice that the power α=0.63 provides a close match with Sutherland law,
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with Tref = 288.15 K and S = 110 K, that is commonly used for air at temperatures, up to 2000
K.

A typical solution of the self-similar equations (9-10) for M ∞ = 4 , α = 0 69. , Pr=0.71,
with constant wall temperature (equation 12, θw = 30. , hot wall) and with adiabatic wall
(equation 11) boundary conditions are shown in Figures 3 and 4, respectively. Note that in
Figure 3 the temperature (θ) increases within the boundary layer, which demonstrates that
viscous dissipation is an important aspect at high Mach number flows. It results in this case in a
heat flux into the wall (θ’), if maxw θ<θ  within the boundary layer. For the adiabatic wall

case (Figure 4), there is no gradient temperature at η=0 (θ’(0)=0), the maximum temperature
is located at the wall (θ(0)=3.67175), and the temperature (θ) decreases within the boundary
layer.

Figure 5 presents the influence of Mach number on streamwise velocity and enthalpy
profiles, for constant wall temperature (hot wall, θw=3) and adiabatic wall cases, using the
power viscosity-temperature law with α=0.69 and Pr = 0.71.
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Figure 2. Viscosity as function of temperature.
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Figure 3. Typical solution for constant hot wall (θ(0)=3) boundary condition
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Figure 4. Typical solution for adiabatic wall (θ’(0)=0) boundary condition
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Figure 5. Streamwise velocity and temperature profiles

For the constant temperature wall case, when the Mach number is 4, the viscous
dissipation creates a heat flux into the wall (see Table I and Figures 3 and 5). For Mach
number greater than 4, at the free stream and at the wall, the fluid is colder than inside the



boundary layer. This means that there exists a heat flux from the boundary layer to the wall and
to the free stream. In the supersonic cases, the heat flux is dominated not only by the
temperature ratio but also by the viscous dissipation, since the temperature increases within the
boundary layer.

For adiabatic wall case, Mach numbers 4 and 10, there is no heat flux from the
boundary layer to the wall. The temperature decreases, in both cases, within the boundary
layer. Yet, the temperatures in the boundary layer and on the wall are much higher than in the
constant wall temperature cases (Figure 5 and Table I).

Table I and equation (11) or (12) shows that ( )∞'f  is function of θw. For constant wall

temperature, θw=3, ( )∞'f  is constant. For adiabatic wall boundary condition the ( )∞'f
changes. For both Mach numbers 4 and 10, the hydrodynamic and thermal boundary layer
thickness for adiabatic wall case are smaller than those for constant wall temperature as can be
seen in Table I.

Table I. Values of f’’(0), θ’(0), f’(∞), θ(∞) and η∞ for various M∞.

5. CONCLUSION

A new methodology for calculating self-similar solutions of a compressible laminar
boundary layer, considering the viscosity as a power function of the temperature, is applied.
The modified Levy-Mangler and Dorodnitsyn-Howarth transformations described the similarity
variables in terms of a power of the density that takes into account the viscosity-temperature
power law. These transformations result in an explicit relation between the stream function and
the temperature fields. Solutions are presented for boundary layer flows over adiabatic wall
with external flow Mach numbers 4 and 10. The present solution methodology also provides a
straightforward way of comparing results using the viscosity-temperature linear relation,
Sutherland’s law and the relation according to the kinetic theory.

These self-similar solutions are applicable to subsonic and supersonic flows. They may
also apply to hypersonic flows with low enthalpy, as long as the flow is far from the leading
edge and is described by a continuum calorically or thermally perfect gas relation.

These self-similar solutions may provide important data needed for the design of future
hypersonic vehicles. It may also be applied in two important areas, as follows:

1) Most of the Hypersonic Shock Tunnels operate at the cold flow condition, where the
total enthalpy is low enough and there are no chemical reactions within the boundary layer.

M∞ ( )f '' 0 η∞ f ( ) ( )1
w'f −α−θ=∞ ( )θ' 0 η θ∞ ( ) w0 θ=θ

constant wall temperature

4 0.48363 5.5327 1.4057 0.29055 5.7998 3.
10 0.43445 6.2696 1.4057 5.68680 6.2696 3.

adiabatic wall

4 0.48976 5.4081 1.4966 0 5.6599 3.67175
10 0.500327 5.434 2.4324 0 5.4340 17.59



Here, the real gas effects may be ignored. Experiments carried out in those facilities, can be
compared to the present analyses.

2) The Navier-Stokes equations for supersonic or hypersonic flows must be solved by
numerical methods since there are no exact solutions for them. The present self-similar
solutions can be used as a tool to validate these numerical simulations.
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