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Abstract . Natural conv ection of an incompressible 
uid can be driven b y buoy ancy

forces due to temperature gradients and thermocapillary forces caused by gradients in the

surface tension. These 
ows, termed Rayleigh-Benard-Marangoni problems, are of great

in terest in studying pattern formation in h ydrodynamical systems. A decoupled �nite

element formulation with adaptive feedback control for timestep selection has been devel-

oped for 2D viscous 
ow problems inv olving heat transfer and surface tension e�ects. The

�nite element 
o w formulation is based on a penalty Galerkin method and the heat equa-

tion utilizes a Galerkin approach. Representative Rayleigh-Benard and Marangoni 
ow

calculations are presented, and the e�ciency of the present timestep scheme is examined

and compared with other time-stepping strategy.
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1. INTRODUCTION

Coupled viscous 
ow and heat transfer computations are of great interest in study-

ing pattern formation in h ydrodynamical systems. Practical applications include, for

example, pattern formation during solidi�cation, welding in manufacturing processes and

growth phenomena to defect fracture and crack propagation. Rayleigh-Benard-Marangoni

problems become very popular as prototypes of complex behavior where nonlinear theo-

ries of patternformation ma y betested. Recently, special attention has been paid to the

study and implementation of numerical and computational techniques to develop e�ective



algorithms capable of high resolution 3D viscous 
ows involving heat transfer and surface

tension e�ects. For example, domain decomposition strategies and parallel gradient-type

iterative solution schemes have been developed and implemented with success for 3-D

Rayleigh-Benard-Marangoni 
ow calculations [1]. These techniques permit making fun-

damental phenomenological 
ow studies at the grid resolution necessary to represent the

�ne scale surface-driven phenomena. Several adaptive timestepping selection strategies

have been also studied as a means to provide stable accurate transient (and steady state)

solutions more e�ciently [8, 9].

The focus in our work is the use of a control approach for automatic timestep selection

for solving 2D coupled viscous 
ow and heat transfer computations. Adaptive techniques

for automatic timestep determination are usually based on approximate local truncation

error measures or on purely heuristic considerations. Winget and Hughes, [9], develop

step size selections based on heuristic rules for transient heat conduction. We remark that

adaptive timestep selection can be viewed as an example of a feedback control problem,

[6, 7].

The equations describing 2D Rayleigh-Benard-Marangoni 
ows are the coupled in-

compressible Navier Stokes and heat transfer equations. The present algorithm employs a

decoupled scheme, where the momentum and continuity equations are solved �rst, in each

timestep, lagging the temperature in the forcing term. Then, the heat transfer equation is

solved with the computed velocities as input. The �nite element 
ow formulation is based

on a penalty Galerkin method to enforce the incompressibility constraint, and the heat

equation utilizes a Galerkin approach. Spatial discretization of the Navier Stokes equa-

tions gives rise to a semi-discrete ODE system for the velocities that are usually solved

by an implicit method. An adaptive timestep selection scheme is central to an e�cient

numerical integration of the ODE equations.

The outline of the treatment is as follows. In the next section we brie
y state the

equations of the 2D Rayleigh-Benard-Marangoni problem, the �nite element formulation,

and solution approach. Then, we describe a simple PID control approach and indicate

how it can be applied to timestep selection of coupled viscous 
ow and heat transfer

computations. Next, results of the classic Rayleigh-Benard problem and Rayleigh-Benard-

Marangoni problem are compared for �xed timestep, an adaptive timestep scheme in the

literature and our PID control approach.

2. FORMULATION AND APPROXIMATION

Natural convection of an incompressible 
uid can be driven by buoyancy forces due

to temperature gradients and thermocapillary forces caused by gradients in the surface

tension. When a thin horizontal layer 
uid between two horizontal plates is heated from

below, a temperature gradient is generated across the plates. At critical Rayleigh number,

circular convection cells set in - the heated 
uid near the bottom begins to rise while the

cooler 
uid near to the top descends. Buoyancy is a dominant component in driving this

type of 
ow termed Rayleigh-Benard problem. If the plate is removed from the upper

surface, then the surface tension e�ects associate with temperature gradients on the free

surface become important. Now both buoyancy and thermocapillary e�ects provide the



dominant forces driving the 
ow for this classical Rayleigh-Benard-Marangoni problem.

We consider the transient 
ow of viscous incompressible 
uid as described by the

Navier-Stokes equations coupled to the heat transfer (energy) equation. Here we con�ne

the study to two-dimensional 
ows with non-deforming free surface. The dimensionless

equations describing the Rayleigh-Benard-Marangoni 
ows are
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where u is the velocity, p is the pressure, T is the temperature, Ra = ��TgL3

��
is the

Rayleigh number, Pr = �
�
is the Prandtl number, � is the thermal coe�cient, �T is the

temperature di�erence for 
ows with heated or cooled walls, g is the gravity vector, L is

a characteristic length scale of the 
ow, � is the kinematic viscosity, and � is the thermal

di�usivity.

The boundary conditions are as follows: u = uw (no slip) on @
1, T = T1(x; y)

(isothermal boundary) or @T
@n

= 0 (adiabatic boundary) on @
1, where @
1 is the part

of the boundary which is not a free surface. On the free surface @
2, the shear stress is

equal to the gradient in the surface tension �. We assume that � varies linearly with T ,

so �T = @�
@T

is a constant for a given 
uid. The non-dimensional boundary condition on

the free surface becomes @u
@y

= Ma
Pr

@T
@x
, where Ma = �T�TL

���
is the Marangoni number and

� is the density. Equations (1), (2) and (3) constitute a coupled system of equations to

be solved for velocity, pressure and temperature.

The present algorithm employs a decoupled scheme, where the Navier-Stokes equations

are solved �rst, in each timestep, lagging the temperature in the forcing term. Then the

temperature is calculated, with the velocities as input. The �nite element 
ow formulation

is based on a penalty Galerkin method to enforce the incompressibility constraint, and

the heat equation utilizes a Galerkin approach.

Introducing a �nite element discretization and basis on 
h the variational boundary

value problem reduces to �nd uh 2 V h satisfying the initial condition with uh = uw on

@
1 such that
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where I denotes the usual reduced numerical integration for the penalty term. This leads

to the following non-linear semidiscrete system of ordinary di�erential equations

�M
du�

dt
+ �Au� +C(u�) +

1

�
�Bu� = �F (6)



which is linearized by successive approximations and integrated implicitly using a Crank-

Nicolson scheme. The solution of the linear systems are obtained using a frontal solver.

To �nd approximate solutions for the transport problem corresponding to (3), we use

a traditional Galerkin �nite element formulation. A week variational statement may be

obtained by integration by parts of the di�usion term in a standard residual formulation,

and then using the Gauss divergent theorem. Assuming that convective and di�usive

e�ects are of same order, we may construct a semidiscrete Galerkin �nite element method

introducing a spatial discretization and an appropriate �nite element space for the ad-

missible functions. The �nite element problem is to �nd Th 2 H0
h satisfying the initial

condition such that

Z

h

(
@Th

@t
!h + u � rTh !h +

1

Pr
rTh � r!h) dx = 0 (7)

for all !h 2 H0
h. The resulting semi-discrete ODE system for the nodal vector T has the

form

M
dT

dt
+B(u)T+DT = 0 (8)

We integrate the ODE system implicitly using a Crank-Nicolson scheme. At each timestep

we solve a linear system using a frontal solver.

3. ADAPTIVE CONTROL

Control can be de�ned as the process of making a system of variables follow a par-

ticular value, called the reference value. Closed-loop process control uses a measurement

of the controlled variable and feedback of this signal to compare it with a reference value.

The feedback is supplied from an output sensor of some sort, and feeds an input of the con-

troller to tell the controller how far the output is from its reference value. The controller

uses this information to correct the output error.

One of the most widely used algorithms for closed-loop control is the three-term con-

trol, known as the Proportional-Integral-Di�erential (PID) control loop. The popularity

of PID controllers can be attributed to their functional simplicity and to their robust

performance in a large range of operating conditions. The objective in using PID control

algorithms is to control the output along a smooth curve (vs. time) towards the set-point

while minimizing overshoot, the amount the system output response proceeds beyond the

desired response. According to Hairer and Wanner [7], stepsize selection can be viewed

as an automatic control problem with a PID controller de�ned as

4tn+1 = (
en�1

en
)kP (

tol

en
)kI (

en�1
2

enen�2
)kD 4tn; (9)

where tol is some input tolerance, en is the measure of the change of the quantities of

interest in time step 4tn, and kP , kI and kD are the PID parameters.

An estimate of the solution change is compared with the speci�ed accuracy require-

ment, and the result is fed back to calculate the new time step. The controller tries to

select the stepsize such that en comes as close as possible to the input tolerance, tol, along



a smooth curve. The measure of the change over a timestep of the quantities of interest,

en, is de�ned by

en = max(eu; eT )

where

eu =
êu

tolu
with êu =

ku�m+1 � u
�

mk

ku�m+1k

eu =
êT

tolT
with êT =

kTm+1 �Tmk

kTm+1k

Here eu and eT are respectively the normalized changes in nodal velocities and tempera-

tures, and k � k denotes the Euclidean norm. The corresponding user supplied tolerances

are tolu and tolT . We supply timestep limits, (4t)min and (4t)max, to incorporating the

anti windup e�ect.

At each timestep, the velocities are calculated with the temperatures as input in the

forcing term, and then the temperatures are obtained using the updated velocities. The

new timestep size is given by (9), and the velocities and temperature are updated to

calculated the new solutions.

If a timestep gives an unacceptable value of en, the step is rejected. Then the step is

repeated with a scaled timestep size based on the magnitude of the error relative to the

tolerance, [8]. However, we �nd in numerical experiments that the number of rejections is

very small, producing a smooth sequence of timesteps. In our algorithm, if the sequence of

iterates of the nonlinear system is converging at a slow rate, the timestep is also rejected.

4. NUMERICAL RESULTS

Our �rst example involves natural convection in a unit square with heated lateral

walls and adiabatic top and bottom wall. The computed Nusselt number at the left

wall (Nu0 =
R
1

0 qdy, where q is the heat 
ux), and the stream function at the midpoint

( mid) are compared to the results from [2, 3, 4]. Consider the two-dimensional 
ow of a

Boussinesq 
uid of Pr = 0.71 and Ra = 103 in an square cavity described by 0 � x; y � 1.

Both components of the velocity are zero on all the boundaries, the boundaries at y = 0

and 1 are insulated, @T
@y

= 0, and T = 1 at x = 0 and T = 0 at x = 1.

The approximate velocities and temperature are calculated using biquadratic elements

in a uniform mesh with size h = 1

16
, a �xed timestep of 0.01, the PID timestep size control,

and the Winget and Hughes approach [9]. We assume that the steady-state occurs when

kum+1�umk < �u kum+1k and kTm+1�Tmk < �T kTm+1k, where m denotes the timestep

index, k � k denotes Euclidean norm, and �u and �T are input tolerances. The results are

shown in Table 1, and the agreement for all cases are good. The contours of the stream

function and temperature are shown in Figures 1. The stream function contour shows the

concentric nature of the streamlines.

We compare approximate solutions using a �xed timestep size of 0.01, the PID timestep

size control, and Winget and Hughes approach. We start with a timestep size of 0.01, and

we allow minimum and maximum timesteps of 0.01 and 0.5, respectively. It is important

to note that for step sizes greater than 0.01 the successive iterations failed to converge



Table 1: Comparison of speci�c results to benchmark case

Fixed �t PID control Winget & Hughes Benchmark

Nu0  mid Nu0  mid Nu0  mid Nu0  mid

1.1184 1.1747 1.1178 1.1740 1.1187 1.1749 1.117 1.174
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Figure 1: Stream function contours (left) and temperature contour (right) for Ra = 103 and

Pr = 0.71

after a few timesteps. The steady-state solutions are obtained at �u = �T = 10�03. We

de�ne a tolerance of 0.18 for changes in nodal velocities and 0.1 for changes in nodal

temperature. The PID parameters are kp = 0.075,ki = 0.175 and kd = 0.01.

Table 2 shows the number of time iterations, ntstep, the number of rejected steps,

nrejec, the total number of successive approximations, nsa, and the computational e�ort,

ceffort, de�ned here as nsa diveded by the number of sucessive approximations obtained

using a �xed timestep size. We obtain the solution with 29 successive approximation

iterations using the PID controller, and we need 64 iterations with a �xed timestep of

0.01. Thus, we are able to calculate the solution 2.2 times faster using the timestep size

control without any signi�cant loss of accuracy. The approach of Winget and Hughes also

shows good results for this particular example. Figures 2 shows the timestep size against

time using the PID controller and the Winget and Hughes approach. The PID control

produce a smooth sequence of timesteps.

Table 2: Results for the natural convection problem with Ra = 103 and Pr = 0.71.

Ra = 103 ntstep nrejec nsa ceffort
Fixed �t 27 0 64 1

PID Control 10 0 29 0.45

Winget & Hughes 15 0 40 0.63

In the second example, we consider 
ow in a rectangular container of length 4 times the

height with Pr = 0.72 and Ra = 30000. The temperatures on the bottom surface and top

surface are Th = 1 and Tc = 0, respectively. The approximate velocity and temperature

are calculated using biquadratic shape functions with a grid of 32 � 8 elements, and the
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Figure 2: Timestep variation using the PID controller (left) and Winget and Hughes approach

(right), Ra = 103 and Pr = 0.71.

PID timestep selection. We consider the steady-state problem and the computed stream

function and temperature contours are shown in Figure 3. There are six recirculation

cells, and the results agree with those in [5].
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Figure 3: Stream function contour Pr = 0.72, Ra = 30000 in a container with aspect ratio 4:1

The steady-state solution is obtained at �u = �T = 10�03, and we set a tolerance of

0.01 for changes in nodal velocities and temperature. We start with a timestep size of

0.001, and we allow minimum and maximum time steps of 0.001 and 0.5, respectively.

This starting timestep is the largest for which we obtained convergence in the successive

iterations. The PID parameters are kp = 0.075,ki = 0.175 and kd = 0.01. As we can see

in Table 3, we obtain the solutions with 983 successive approximation iterations using

the PID controller. With a �xed timestep size of 0.001, we need 1547 iterations. Thus,

the solutions are obtained 1.6 times faster using the PID controller. In this problem the

PID control also shows better results than the approach used by Winget and Hughes.

Figures 4 shows the timestep size against time using the PID controller and the Winget

and Hughes approach, respectively.

The third numerical experiment involves buoyancy forces due to temperature gradients

and thermocapillary forces caused by gradients in the surface tension. The 
ow domain

and boundary conditions are the same as the �rst example except that the top is now a



Table 3: Results for the problem using the PID control and the �xed timestep size.

Case ntstep nrejec nsa ceffort
Fixed �t 513 0 1547 1

PID Control 248 1 983 0.63

Winget & Hughes 258 7 1045 0.67
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Figure 4: Timestep variation using the PID controller (left) and Winget and Hughes approach

(right) for Pr = 0.72, Ra = 30000 in a container with aspect ratio 4:1.


at free surface, Ra = 103, Pr = 0.71, and Ma = -100. The approximate steady-state

velocities and temperature are calculated using biquadratic elements in a uniform mesh

with size h = 1

16
. Figure 5 shows the computed stream function and temperature contours,

and the e�ect of the surface tension can be observed. The streamlines are concentrated

near the top boundary as similar experiments presented in [10].
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Figure 5: Stream function contours (left) and temperature contour (right) for Ra = 103, Pr

= 0.71, and Ma = -100

To study the behavior of the PID timestep selection, we start with a timestep size of

0.001, the maximum step for which the successive iterations converge. We allow minimum

and maximum time steps of 0.001 and 0.1, respectively, and �u = �T = 10�04. The solutions

are obtained with a tolerance of 0.018 for changes in nodal velocities and 0.01 for changes



in the nodal temperature. The PID parameters are kp = 0.01,ki = 0.55 and kd = 0.01.

As we can see in Table 4, we obtain the solutions with 233 successive approximation

iterations using the PID controller. With a �xed timestep size of 0.001, we need 571

iterations. Thus, the solutions are obtained 2.5 times faster using the PID controller.

Figures 6 shows the timestep size against time using the PID controller and the Winget

and Hughes approach.

Table 4: Results using the PID control and the �xed timestep size when Pr = 0.71, Ra = 1000

and Ma = -100 in a unit square.

Case ntstep nrejec nsa ceffort
Fixed �t 151 0 571 1

PID Control 49 0 233 0.41

Winget & Hughes 52 0 245 0.43
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Figure 6: Timestep variation using the PID controller (left) and Winget and Hughes approach

(right), Ra = 103, Pr = 0.71, and Ma = -100

5. CONCLUSIONS

We introduce an adaptive timestep selection scheme based on feedback control theory

to increase the robustness of our �nite element formulation of coupled incompressible

viscous 
ow and transient heat transfer. The �nite element 
ow formulation is based

on a penalty Galerkin method and the heat equation utilizes a Galerkin approach. The

algorithm employs an iteratively decoupled scheme in the present work.

We solve Rayleigh-Benard-Marangoni problems, and results are compared with �xed

timestep, an adaptive timestep scheme from the literature, and our PID control approach.

With the PID control strategy we �nd approximate solutions with a much smaller number

of steps without any signi�cant loss of accuracy. For instance, we have a 2.45 times

improvement in the computational e�ort to compute the solution within the same accuracy

in the third experiment involving the Marangoni e�ects. The PID control shows better



results than Winget and Hughes approach in all cases studied here. Our results with

PID control for timestep selection show a smooth variation of timesteps, suggesting that

a robust algorithm, without heuristics, is possible.

Future numerical experiments involve the calculation of the kinetic energy to improve

timestep selection. The nondimensional kinetic energy is a suitable parameter for mon-

itoring the behavior of the liquid phase and for constructing bifurcation diagrams when

time progress. The measure of the change over a timestep of the quantities of interest

will be de�ned by the normalized changes in nodal velocities and temperatures, and the

nondimensional kinetic energy.
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