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1 INTRODUCTION

In v erseheat conduction problems hav e n umerous important applications in various

branches of engineering and science, including among others, estimation of unknown

boundary heat uxes (Blanc et al., 1998), thermophysical properties of materials (Artyukhin

et al., 1993), and timewise variation of the strength of energy sources located inside a

medium (Silva Neto and �Ozisik, 1994).

These problems are known to be ill-posed, in contrast to the direct heat conduction

problems, which are well-posed (that is: the solution exists, it is unique and stable to

small changes in the input data.) A variety of n umerical and analytical techniques has

been proposed for the solution of these inv erse heat conduction problems, (Beck et al.,

1985, Alifanov et al., 1995).

The inv erse problems may be considered in two groups: function estimation and param-

eter estimation. F unction estimation inv olv es an in�nite dimensional optimization problem

in which we search for the solution in a space of functions with no prior information on the

functional form of the quantity to be estimated. P arameter estimation consistsof a �nite

dimensional optimization problem in which a �nite number of parameters is estimated.

1Also, Nuclear Engineering Program, COPPE/UFRJ, CP 68509, 21945-970, Rio de Janeiro, RJ, Brazil.



The Conjugate Gradient Method is a powerful approach for the solution of function

estimation inverse problems because regularization is implicitly built into the algorithm.

In the application of this method several steps have to be considered: the direct problem,

the sensitivity problem, the adjoint problem, the gradient equation determination, the

conjugate gradient method of minimization and the stopping criterion. In this work the

formulation of the several steps involved on the application of this procedure for function

estimation in linear and nonlinear di�usive processes is presented.

In Section 2 we present a class of direct heat conduction problems (DHCP), and make

some general remarks. Inverse heat conduction problems (IHCP) are considered in Sec-

tion 3 where we establish in which optimal sense one wants to solve it. Section 4 discusses

some gradient based iterative algorithms for optimization problems, including Landweber

and Conjugate Gradient methods. These methods require the computation of the gradient

of energy functionals of a certain type de�ned in in�nite dimensional spaces, and we show

how this is done in Section 5. It follows a discussion of so-called sensitivity and adjoint

problems. Finally, in Section 6, we present some conclusions and perspectives for future

work.

2 LINEAR AND NON-LINEAR HEAT CONDUCTION PROBLEMS

Heat conduction problems study the evolution of the temperature on a material body.

Here we will assume an undeformable material body represented by 
 � IR3. Let T =

T (x; t), x 2 
, t 2 [0;1) be the temperature distribution in 
 along the time. Then, T

satis�es an initial-boundary value problem for a partial di�erential equation:

Evolution equation: C(T )
@T

@t
= div (k(T )rT ) + g ; x 2 
; t > 0 (1)

Initial temperature distribution: T (x; 0) = T �(x) ; x 2 
 (2)

Here C(T ) = �cp(T ), where � is the material density and cp(T ) is the speci�c heat which

may depend on the temperature, k(T ) is the heat di�usion coe�cient, g is due to a heat

source accounting for a rate of heat per unit volume and T �(x) is the initial temperature

distribution.

As for the boundary one usually has one of the following types of conditions:

T (x; t) = Te(x; t); x 2 @
; t > 0 (3)

�k(T )n(x) � rT (x; t) = f(x; t); x 2 @
; t > 0 (4)

�k(T )n(x) � rT (x; t) = h (T (x; t)� Te(x; t)) x 2 @
; t > 0 (5)

The �rst, Eq. (3), is Dirichlet's condition where the temperature at the boundary is pre-

scribed, the second, Eq. (4), is Neumann's condition where the heat ux is prescribed, and

the third, Eq.(5), is Robin's condition where a relation between temperature and heat ux

is prescribed. Here n(x) denotes the exterior unit vector to the boundary of 
 at x 2 @
,

Te is the external temperature, f is the heat ux through the boundary and h is the heat

transfer coe�cient.

One may, depending on the application, have a mixed type boundary condition. The

boundary @
 can be decomposed in two or more disjoint pieces, say, �1, �2 and �3, and

have Dirichlet boundary condition on �1, Neumann on �2 and Robin on �3.



For direct heat conduction problems one assumes that C = C(T ), k = k(T ) , g, the

geometry (
), and initial condition (T �) to be known. Depending on the speci�c type of

boundary condition, we also assume that: (a) Te is known; (b) f is known or (c) h and Te
are known.

Nonlinearity can arise at the level of the equation or the boundary conditions. For

one to have a linear problem, C(T ) and k(T ) should be constant. However, even though

we have not allowed that in Eq. (1), for the general case of bodies exhibiting spatial

or temporal material variations one may also allow C and k to vary with x and t, i.e.

C = C(T;x; t), and k = k(T;x; t). In this case, to have a linear problem one should have

C and k depending at most on x and t. For a linear problem, non homogeneity of the

problem can be given by either g, f , Te or T
�.

One may exhibit explicitly dependence of the �eld temperature on the data of the prob-

lem. For example if one has Robin boundary condition, we write T (x; t) = T [T �; g; Te] (x; t)

and say that T = T [T �; g; Te] represents the solution operator.

In linear problems homogeneity becomes a key concept in that the solution operator

becomes linear with respect to data. For example, the solution operator of Eq. (1,2,5) is

linear if:

� g = 0 and Te = 0 with the initial condition (T �) as the data:

T
h
�T �;1 + �T �;2; 0; 0

i
= �T

h
T �;1; 0; 0

i
+ �T

h
T �;2; 0; 0

i
; �; � 2 IR

� g = 0 and T � = 0 with the external temperature (Te) as the data:

T
h
0; 0; �T 1

e
+ �T 2

e

i
= �T

h
0; 0; T 1

e

i
+ �T

h
0; 0; T 2

e

i
; �; � 2 IR

� Te = 0 and T � = 0 with the source term (g) as the data:

T
h
0; �g1 + �g2; 0

i
= �T

h
0; g1; 0

i
+ �T

h
0; g2; 0

i
; �; � 2 IR

For certain linear problems and speci�c geometries one can write explicit formulas for

the solution operator exhibiting the dependence of the �eld temperature on the data. As

one illustrative example, let 
 = IR3, k = C = 1, g = 0 and zero Dirichlet boundary

condition at in�nity, then one has:

T (x; t) =
1

(4�t)
3

2

Z
IR3

e�
jjx�yjj2

4t T �(y) dy

However, in general, one can only get either qualitative (mathematical) assertions on

the solution operator and on the solution, (Friedman, 1964, Folland, 1976), or approxima-

tions obtained by some numerical scheme, (Richtmyer and Morton, 1967, Sod, 1985).

3 INVERSE PROBLEMS

To solve for the �eld temperature T , one has to know some constants or functions,

depending on the type of boundary conditions appropriate to the speci�c problem at

hand. An inverse heat conduction problem (IHCP) is characterized by having one or more

of these constants/functions unknown. For example, in problem (1,2,5), one may know k,



C, T � and Te while the heat source g is unknown. Or else, we know k, C, Te and g but we

do not know the initial temperature distribution, T �. Other possibilities can also happen.

The objective, then, in an IHCP is to estimate (approximate) unknown constants or

functions. In any case, one needs additional information, typically experimental measure-

ments of the temperature �eld. This can be done in di�erent ways but, for simplicity, we

assume here that one has temperature measurements at positions xi, i = 1; : : : n, along

the time, and which are represented by Zi(t).

Say we consider the problem of determining the source g in Eq. (1,2,5), when T �, and

Te are known. Due to unavoidable experimental errors or slight di�erences between the

mathematical model and physical reality, or also, as is frequently the case, only partial

information (incomplete data) is available, one might not have any possible choice of g

such that the solution T = T [g] would �t exactly (interpolate) the data,2 i.e.:

T [g](xi; t) = Zi(t); t > 0; i = 1; : : : n (6)

In this case we start by de�ning a squared residue error function,

g 7! E[g] =
1

2

nX
i=1

Z
tf

0

fT [g](xi; t)� Zi(t)g
2
dt

=
1

2

Z
tf

0

Z



nX
i=1

fT [g](x; t)� Zi(t)g
2
�xi(x) dx dt

where tf is the �nal time of measurements. We then choose the source term ĝ that

minimizes E among all possible sources g in an adequate function space, here denoted by

V . That is,

E[ĝ] = min
g2V

E[g] (7)

This is an in�nite dimensional optimization problem.

4 GRADIENT BASED ITERATIVE PROCEDURES FOR THE MINI-

MIZATION OF AN ERROR FUNCTION

We shall outline some methods to minimize the error function E based on its gradient.

We start by considering the steepest descent method and Landweber iteration, which is a

simplication of the former. and then we present the conjugate gradient method.

4.1 Steepest descent and Landweber iteration

Let � be a given tolerance. The steepest descent method is given by the following

algorithm.

2One might want to discard the model if Eq. (6) is not satis�ed for any g. This is similar to trying to
�t a line y = ax+b to a collection of points (xi;yi), i = 1; : : : n in the plane, which is in general impossible
if n > 2. However, as one knows, for many practical purposes, it is enough to have a best residue squared
approximation. Also, sometimes it is better to have that type of line approximation than to have a higher
order interpolating polynomial. A higher order polynomial would increase the mathematical complexity
of the model without signi�cantly increasing the quality of it and most probably the interpolating model
would be a worse model (wild behaviour) o� the data.



1st step: (Initialization of the method) Choose an initial function3 go(x; t) = g�(x; t) 2

L2 (
� [0; tf ]). Let k = 0.

2nd step: (Determination of the steepest descent direction) Compute the gradient of E

at gk, a function of x and t, E 0

gk
= E 0

gk
(x; t), and de�ne the descent direction pk by

pk = E 0

gk
(8)

3rd step: (Determination of the step size in the descent direction) Compute �k satisfy-

ing the critical point equation of the one variable real valued function IR 3 � 7!

E
h
gk + �pk

i
2 IR, that is, �k is the solution of

d

d�
E
h
gk + �pk

i
= 0 (9)

4th step: (Determination of a new approximation) De�ne

gk+1 = gk + �kpk (10)

5th step (Stopping criterion) If

jjgk+1 � gkjj22 = jj�kpkjj2 =

Z
tf

0

Z



����kpk(x; t)
���2 dx dt < �2

stop. Else, do k = k + 1 and return to step 2.

We note that, even though, in this general setting, the steepest descent method looks

simple, the application of it to IHCP is not. For example:

(i) the determination of E 0

gk
in Eq. (8) demands the solution of two sets of partial

di�erential equation problems as is shown in Section 5.4.

(ii) �nding the solution of the 1-D equation given by Eq. (9) can be time consuming and

analytic and numerically complex even considering a Newton type method.

To illustrate some of the di�culties involved in solving Eq. (9) we consider the special case

when the problem is linear. In this case,

�k = �

R tf
0

R



P
n

i=1

�
T [gk](x; t)� Zi(t)

�
~T (x; t)�xi(x) dxdtR tf

0

R



P
n

i=1

�
~T (x; t)

�2
�xi(x) dx dt

(11)

where ~T is the solution of the sensitivity equation, a linear partial di�erential equation

which is presented is Section 5.2. Therefore, the determination of �k, in the linear case,

involves solving two sets of partial di�erential equations to get T [gk] and ~T and computing

the integrals in Eq. (11). For the nonlinear case we could still use �k in Eq. (11) as a

rough approximation to the solution of Eq. (9). However, the determination of T [gk] would

involve solving a nonlinear partial di�erential equation. We present the derivation of the

step size, Eq (11), in Section 5.5.

Since in fact the solution of Eq. (9) is not what is at stake here, one wants to solve

Eq. (7), we can consider a variant of the steepest descent method, known as Landweber

iteration, which is obtained by a further simpli�cation and is de�ned by changing Eq. (10)

into gk+1 = gk + �pk, where � < 0 is a constant chosen arbitrarily. By doing that one

avoids altogether having to compute �k in Eq. (11) and even of solving Eq. (9).

3As an example, one may set go(x; t) = 0.



4.2 CG: conjugate gradient method

In this method the 2nd step of the algorithm is altered. Equation (8) for the descent

direction is modi�ed and the direction at iteration k is constructed as a combination of

the gradient E 0

gk
with the descent direction of the previous iteration k � 1,

pk = E 0

gk
+ kpk�1; with 0 = 0; for k � 0 (12)

where the conjugate coe�cient k may be calculated in several ways being one of the most

frequently used,

k =

R tf
0

R



�
E 0

gk

�2
dx dtR tf

0

R



�
E 0

gk�1

�2
dx dt

One then proceeds with the remaining steps as above to determine the sucessive approxi-

mations.

5 THE GRADIENT, THE SENSITIVITY AND THE ADJOINT PROB-

LEMS

5.1 Directional derivatives and the de�nition of the gradient

We consider now the question of determining the gradient of E. This is of surmount

importance in these problems since it is used in de�ning the search direction as can be

seen in Eq. (8) and Eq. (12) for the steepest descent, Landweber or conjugate gradient

methods. We tackle this by considering a directional derivative (Gateâux derivative) of

the functional E. First, let g� = g�(x; t) denote a one parameter family of functions such

that:

g�j�=0 = g0(x; t) = g(x; t) and
dg

d�

�����
�=0

= ~g(x; t)

We may think of g� as a small perturbation4 of g; in fact, g� � g + �~g, as � ! 0. If we

denote by dEg[~g] the directional derivative of E at the point g in the direction ~g, then,

dEg[~g] =
d

d�

�����
�=0

E [g�] =
Z

tf

0

Z



 
nX

i=1

fT [g](x; t)� Zi(t)g �xi(x)

!
~T (x; t) dxdt (13)

Here, ~T = ~T (x; t) stands for the directional derivative of T at g in the direction ~g,

~T (x; t) =
d

d�

�����
�=0

T [g�](x; t) (14)

and it is the solution of the so-called sensitivity problem which we discuss further below

in Section 5.2. We observe that the notation used in Eq. (14) does not refer explicitly to

the dependence of ~T on ~g nor on g. For linear problems, in fact, ~T does not depend on g,

4This setup is most convenient when considering nonlinear problems. For linear problems, one usually
writes equations for T +�T due to a source g+�g and gets information for the �rst order terms in �T
and �g, neglecting higher order terms in �T and �g, (Silva Neto and �Ozisik, 1994).



only on ~g. Nonetheless, ~T depends linearly on ~g (either for linear or nonlinear problems)

and we write that dependence by means of a linear operator P ,

~T = P ~g (15)

Then, from Eq. (13),

dEg[~g] =
Z

tf

0

Z



 
nX

i=1

fT [g](x; t)� Zi(t)g �xi(x)

!
(P ~g)(x; t) dxdt (16)

We recall that by the de�nition of the gradient of a functional E at a point g, denoted

here by E 0

g
, the gradient is just the function that represents the (Fr�echet) derivative, dEg,

with respect to the inner product, that is, such that:

dEg[~g] = hE 0

g
; ~gi =

Z
tf

0

Z



E 0

g
(x; t)~g(x; t) dxdt for all ~g (17)

In order to get E 0

g
one needs to change,in Eq. (16), the action of the linear operator P

from ~g over to
P

n

i=1 fT [g](x; t)� Zi(t)g �xi(x) as can be seen by comparing Eq. (16) with

Eq. (17). This is done by means of an adjoint operator.

Before we consider further the determination of the gradient, we look at the sensitivity

problem.

5.2 Sensitivity problem

By de�nition of ~T (given by Eq. (14)), we see that in the problems here considered, it is

the solution of the linearization of problem (1,2,5). In fact, writing T�(x; t) = T [g�](x; t);

we have that:

C(T�)
@T�

@t
= div (k(T�)rT�) + g�; x 2 
; t > 0 (18)

T�(x; 0) = T �(x); x 2 
 (19)

�k(T�)n � rT�(x; t) = h (T�(x; t)� Te(x; t)) ; x 2 @
; t > 0 (20)

One looks for the equation that ~T = d

d�

���
�=0

T� has to satisfy. Di�erentiating Eq. (18-20)

with respect to � and letting � = 0, we have that ~T satis�es5:

@

@t

�
C(T0) ~T

�
= 4

�
k(T0) ~T

�
+ ~g; x 2 
; t > 0 (21)

~T (x; 0) = 0; x 2 
 (22)

�n(x) � r
�
k(T0(x; t)) ~T (x; t)

�
= h ~T (x; t) x 2 @
; t > 0 (23)

Here we recall that T0 = T [g0] = T [g]. We note that (21)-(23) is a linear problem for ~T

with respect to ~g, independently of whether the original problem is linear or nonlinear.

In particular the boundary and the initial conditions are homogeneous in ~T . We are thus

justi�ed to write Eq. (15).

5We have used that

C(T0)
@ ~T

@t
+ C

0(T0) ~T
@T0

@t
=

@

@t

�
C(T0) ~T

�
and that k(T0)r ~T + k

0(T0) ~TrT0 = r
�
k(T0) ~T

�
where C 0, k0 are the derivatives of C and k with respect to T .



5.3 Adjoint operator and adjoint problem

Consider the linear di�erential operator

L� =
@

@t
(C(T0)�)�4(k(T0)�) (24)

which we have gotten from considering the homogeneous terms in ~T on Eq. (21). Let it

be de�ned on the set of functions

U = f� j�(x; 0) = 0 forx 2 
; and � n � r(k(T0)�) = h�; x 2 @
; 0 � t � tfg (25)

which is suggested by Eq. (22) and Eq. (23) (just replacing ~T by �).

The formal adjoint operator L� will be de�ned in an appropriate function space, V, in

such a way that

h ;L�i = hL
� ; �i; for all � 2 U ;  2 V (26)

By de�nition of L and integration by parts we have6

h ;L�i =
Z

tf

0

Z



 

(
@

@t
(C(T0)�)� div (r(k(T0)�))

)
dx dt

=
Z

tf

0

Z



"
�C(T0)

@ 

@t
� k(T0)4  

#
� dxdt (27)

+
Z



 C(T0)�j
tf

0
dx�

Z
tf

0

Z
@


[ n � r(k(T0)�) + k(T0)n � (r )�] dSx dt| {z }
boundary terms

Using the fact that � 2 U , (see Eq. (25)), we have that:

boundary terms =
Z



 (x; tf )C(T0(x; tf))�(x; tf ) dx

�

Z
tf

0

Z
@


[�h (x; t) + k(T0)n � r ]�(x; t) dSx dt (28)

If we now take the di�erential operator and function space as

L
� = �C(T0)

@

@t
� k(T0)4 (29)

V = f j (x; tf ) = 0; for x 2 
; and k(T0)n � r = h ;x 2 @
; 0 � t � tfg

we have from the de�nition of V that the boundary terms in Eq. (28) are null and from

Eq. (27) and the de�nition of L� in Eq. (29) that Eq. (26) is satis�ed. We then say that

L� on V is the formal adjoint operator of L on U .

We are now in a position to de�ne the adjoint problem. This is done by looking at

the di�erential operator L� and the function space V, which suggests the equation and

6Here we have used that:

 
@

@t
(C(T0)�) = �

@ 

@t
C(T0)�+

@

@t
( C(T0)�) and

� 4 (K(T0)�) = �K(T0)(4 )�� div ( r(K(T0)�)) � div (K(T0)(r )�)



adequate initial and boundary conditions. We say that � satis�es the adjoint problem (to

the sensitivity problem (21-23)) if:

�C(T0)
@

@t
� = k(T0)4 � + l(x; t) x 2 
; 0 < t < tf (30)

�(x; tf) = 0; x 2 
 (31)

k(T0)n � r = h ; x 2 @
; 0 < t < tf (32)

This is a backward heat transfer problem (the �nal `temperature' distribution is given

instead of the initial `temperature'), see Eq. (31). Here l is a source term.

We denote by Q the solution operator of problem de�ned by Eq. (30-32), that is,

�(x; t) = (Ql)(x; t) (33)

and note that it is a linear operator in l.

5.4 A di�erential equation to determine the gradient

It is not a very trivial fact7 but, in some cases, the adjoint of the solution operator of

the sensitivity problem (P �, with P de�ned in Eq. (15)) is the solution operator of the

adjoint problem (Q de�ned in Eq. (33)), that is P � = Q.

From Eq. (16) we have that:

dEg[~g] =
Z

tf

0

Z



 
P �

"
nX

i=1

(T [g]� Zi) �xi

#!
(x; t)~g(x; t) dx dt (34)

Comparing Eq. (34) with Eq. (17), and using that P � = Q, we conclude that:

E 0

g
= P �

 
nX

i=1

(T [g]� Zi) �xi

!
(35)

Some remarks about Eq. (35) are in order. Say one wants to compute the gradient of

E at g, that is, E 0

g
. Then, from Eq. (35), we see that one has to solve the adjoint problem,

Eq. (30-32) with the source term given by

l =
nX

i=1

(T [g]� Zi) �xi (36)

However, the adjoint problem depends on the knowledge of T0 (see Eq. (30-32). Also the

source term, Eq. (36), depends on it since T [g] = T0. The function T0 is the solution of

the (possibly nonlinear) DHCP de�ned by Eq. (1,2,5). Summarizing, to determine E 0

g
one

has �rst to solve a DHCP to get T [g] and secondly an adjoint problem with source term

given by Eq. (36). This comprises two sets of partial di�erential equations.

5.5 Step size

In the linear case, T [gk + �pk] = T [gk] + � ~T with ~T denoting the solution of the

sensitivity problem with source term given by pk. Therefore, E[gk + �pk] is a quadratic

polynomial in � and has a minimum value exactly at �k given by Eq. (11).

7If L denotes the linear operator de�ning the linear problem, L�1 will be the solution operator. The
assertion that the adjoint of the solution operator is the solution of the adjoint problem can be written as:
(L�1)� = (L�)�1. Formally, this is shown as: hu; (L�1)�vi = hL�1

u;L�(L�)�1
vi = hLL�1

u; (L�)�1
vi =

hu; (L�)�1
vi; 8u; v. The derivation presented is alright for bounded operators in Hilbert spaces. It lacks

rigour for typical IHCP, where unbounded operators are involved and the mathematics is much more
involved, however it is not our aim here to consider that.



6 CONCLUSIONS AND PERSPECTIVES FOR FUTURE WORK

We presented a general framework do deal with IHCP which applies both to linear and

nonlinear problems. We emphasized key concepts such as linearization, adjoints, Fr�echet

and Gateâux derivatives and the gradient. The determination of the gradient of the

error function is central in a broad range of minimization methods needed to solve IHCP.

Nonlinear problems are more complex due to the need of dealing with more abstract

mathematical concepts. However, we will present elsewhere an operational procedure

to get the gradient without explicitely considering the full abstract setup, and we will

show that the procedure is mathematicaly sound. The framework discussed is needed to

extend to nonlinear problems the investigation initiated in Silva Neto and �Ozisik, 1994.

We intend to extend GMRES methodology, introduced by Saad and Schultz, 1986, for

�nite dimensional problems, to deal with IHCP. We will investigate and compare the

performance of the methods based on the conjugate gradient and GMRES on typical

IHCP.
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