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Abstract. This work deals with the solution of inverse problems of parameter estimation in
drying in capillary porous media. The physical problem considered here is described by the
linear one-dimensional Luikov’s equations. The associated direct problem is solved
analytically by the Classical Integral Transform Technique. An analysis of the sensitivity
coefficients and the use of the D-optimum criterion permit the design of the experiment with
respect to the final experimental time, number and locations of sensors and the number of
parameters that can be estimated. The present parameter estimation problem is solved with
Levenberg–Marquardt’s method of minimization of the ordinary least-squares norm, by using
simulated experimental data with random errors.

Keywords: Luikov’s equations, Heat and mass transfer, Drying, Inverse problem, Levenberg –
Marquardt’s method.

1. INTRODUCTION

The phenomena of heat and mass transfer in capillary porous media has practical
applications in several different areas including, among others, drying and the study of
moisture migration in soils and construction materials (Luikov, 1966, Mikhailov and Özisik,
1984, Ribeiro and Lobo, 1998). For the mathematical modeling of such phenomena, Luikov
(1966) has proposed his widely known formulation, based on a system of coupled partial



differential equations, which takes into account the effects of the temperature gradient on the
moisture migration.

The computation of the temperature and the moisture content fields in capillary porous
media, from the knowledge of initial and boundary conditions, as well as of the
thermophysical properties appearing in the formulation, constitutes a Direct Problem of heat
and mass transfer. Such type of direct problem, based on Luikov’s theory, was solved
analytically through the use of the Classical Integral Transform Technique (Mikhailov and
Özisik, 1984). Later, Lobo et al (1987) found that the associated eigenvalue problem had
complex eigenvalues, that were not accounted for in previous works. The effects on the
solution of including one pair of conjugate complex eigenvalues were critically addressed by
Lobo et al (1987), while the inclusion of complex eigenvalues of higher order were discussed
by Guigon et al (1999). The use of the Generalized Integral Transform Technique, with
simpler eigenvalue problems involving analytical eigenfunctions, can avoid the calculation of
complex eigenvalues for the drying problem based on Luikov’s formulation. For more details
on the use of such hybrid numerical-analytical technique, the reader is referred to the works of
Ribeiro et al (1993), Cotta (1993), Ribeiro and Cotta (1995) and Ribeiro and Lobo (1998). We
note that numerical techniques such as finite differences have also been used in the past for
the solution of Luikov’s system of equations (Lobo et al, 1995, Lobo, 1997).

The numerical modeling of drying in capillary porous media requires the accurate
knowledge of several thermophysical and boundary condition parameters that appear in the
formulation. The use of inverse analysis techniques permits the estimation of such
parameters, from the knowledge of temperature and moisture content measurements taken in
the media (Beck and Arnold, 1977, Orlande et al, 1995, Mejias et al, 1999, Dantas and
Orlande, 1996, Özisik and Orlande, 1999).

In this paper we present the solution of the inverse problem of estimating several
thermophysical and boundary condition parameters, appearing in Luikov’s formulation for the
drying of a one-dimensional capillary porous media. Such parameters include the Luikov
number, the Posnov number, the Kossovitch number, the phase change criterion, and the Biot
numbers for heat and mass transfer at one of the boundaries. The present inverse problem of
parameter estimation is solved by using the Levenberg-Marquardt method of minimization of
the least-squares norm (Beck and Arnold, 1977, Özisik and Orlande, 1999). Simulated
temperature measurements are used here in order to verify the accuracy of the present
parameter estimation approach.

2. DIRECT PROBLEM

The physical problem under picture involves a one-dimensional capillary porous medium,
initially at uniform temperature and uniform moisture content. One of the boundaries, which
is impervious to moisture transfer, is put in contact with a heater. The other boundary is put in
contact with the dry surrounding air, thus resulting in a convective boundary condition for
both the temperature and the moisture content, as illustrated in Fig. 1. The linear system of
equations proposed by Luikov (1966), for the modeling of such physical problem involving
the drying of a capillary porous medium, can be written in dimensionless form as (Luikov,
1966, Mikhailov and Özisik, 1984, Cotta, 1993, Ribeiro, 1993, Ribeiro and Lobo, 1998):
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The various dimensionless groups appearing above are defined as
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where a is the thermal diffusivity of the porous medium, am is the moisture diffusivity in the
porous medium, c is the specific heat of porous medium, h is the heat transfer coefficient, hm

is the mass transfer coefficient, k is the thermal conductivity, km is the moisture conductivity, l
is the sheet thickness, q is the prescribed heat flux, r is the latent heat of evaporation of water,
Ts is the temperature of the surrounding air, To is the uniform initial temperature in the
medium, u* is the moisture content of the surrounding air, uo is the uniform initial moisture
content in the medium, δ is the thermogradient coefficient and ε is the phase conversion
factor. Lu, Pn and Ko are denoted as the Luikov, Posnov and Kossovitch numbers,
respectively.

Flow of dry air
Heat and moisture transport

Hot plate Heat supply rate: q

Figure 1 - Geometry for the drying of a moist porous medium

The above problem (1) is referred to as a Direct Problem when initial and boundary
conditions, as well as all parameters appearing in the formulation are known. The objective of
the direct problem is to determine the dimensionless temperature and moisture content fields,
θ(X,τ) and φ(X,τ), respectively, in the capillary porous media.

Moist porous sheet



3. INVERSE PROBLEM

For the inverse problem of interest here, the parameters Lu, Pn, Ko, ε, Biq and Bim are
regarded as unknown quantities. For the estimation of such parameters, we consider available
the transient temperature measurements Yim taken at the measurement locations Xm,
m=1,…,M, as well as the transient measurements of the moisture content Cin taken at the
measurement locations Xn, n=1,…,N.  The subscript i above refers to the time when the
measurements are taken, that is, ti , for i=1,…,I. We note that the temperature and moisture
content measurements may contain random errors, but all the other quantities appearing in the
formulation of the direct problem are supposed to be known exactly.

Inverse problems are generally ill-posed (Hadamard, 1923, Beck and Arnold, 1977,
Özisik and Orlande, 1999), as a result of the errors inherent to the measurements used in the
analysis. The accurate solution of inverse problems generally involve their reformulation in
terms of well-posed minimization problems. By assuming additive, uncorrelated and normally
distributed random errors, with constant standard deviation and zero mean, the solution of the
present parameter estimation problem can be obtained through the minimization of the
ordinary least-squares norm. Such a norm can be written as
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where P=[Biq, Bim, Lu, Pn, Ko, ε] denotes the vector of unknown parameters. The superscript
T above denotes transpose and [M-E(P)]T is given by
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, i=1,...,I is a row vector containing the differences between the measured and

estimated potentials at the measurement positions Xm, m=1,...,M for temperature and Xn,
n=1,...,N for moisture at time ti, that is,
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The estimated potentials θim, m=1,…,M and φin, n=1,…,N, are obtained from the solution
of the direct problem, Eqs. (1), for temperature at the measurement location Xm, and for
moisture content at the measurement location Xn , respectively, at time ti.

The present inverse problem of parameter estimation is solved with the Levenberg-
Marquardt method (Beck and Arnold, 1977, Özisik and Orlande, 1999). The iterative
procedure of such method is given by

])([)(])[( kTk1kkkTkk1k PEMJJJPP −++= −+ Ωµ (5)

where Jk is the sensitivity matrix, µ
k  is a positive scalar named damping parameter, Ω

k
 is a

diagonal matrix and the superscript k denotes the iteration number.
The purpose of the matrix term µ

k Ωk
, included in equation (5), is to damp oscillations

and instabilities due to the ill-conditioned character of the problem, by making its components



large as compared to those of JTJ if necessary. The damping parameter is made large in the
beginning of the iterations, since the problem is generally ill-conditioned in the region around
the initial guess used for the iterative procedure, which can be quite far from the exact
parameters. With such an approach, the matrix JTJ is not required to be non-singular in the
beginning of iterations and the Levenberg-Marquardt Method tends to the Steepest Descent
Method, that is, a very small step is taken in the negative gradient direction. The parameter µk

is then gradually reduced as the iteration procedure advances to the solution of the parameter
estimation problem, and then the Levenberg-Marquardt Method tends to the Gauss Method
(Beck and Arnold, 1977, Özisik and Orlande, 1999).

The sensitivity matrix is defined as
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The elements of the sensitivity matrix are denoted as the sensitivity coefficients. They are
defined as the first derivative of the estimated potential with respect to the unknown
parameters. The sensitivity coefficients are required to be large in magnitude in order to
estimate parameters not very sensitive to the measurement errors. Also, the columns of the
sensitivity matrix are required to be linearly independent in order to have the matrix JTJ
invertible, that is, the determinant of JTJ cannot be zero or even very small. Such a
requirement over the determinant of JTJ is better understood by taking into account a
statistical analysis, as described below.

After the minimization of the least squares norm given by Eq. (3.b), a statistical analysis
can be performed in order to obtain confidence intervals and a confidence region for the
estimated parameters. Confidence intervals at the 99% confidence level are obtained as (Beck
and Arnold, 1977, Özisik and Orlande, 1999):

jj P̂jjP̂j 576.2P̂P576.2P̂ σσ ≤≤− (7.a)

where P̂  are the values estimated for the unknown parameters.
The Confidence Region can be computed as

2
N
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where 
2

N
χ is the chi-square distribution for N degrees of freedom (number of unknown

parameters), for a given confidence level and V is the covariance matrix of the estimated
parameters given by

21T )( σ−= JJV (8)



An analysis of Eq. (7.b) reveals that some measure of the matrix V-1 needs to be
maximized in order to minimize the hypervolume of the confidence region and, as a result,
obtain minimum variance estimates. Since the covariance matrix is given by Eq. (8), we can
choose to maximize the determinant of the matrix JTJ by using the so called D-optimum
criterion (Beck and Arnold, 1977, Özisik and Orlande, 1999), in order to design the
experiment with respect to its duration and to the number and location of sensors.

RESULTS AND DISCUSSION

The present parameter estimation problem is classified as nonlinear, because the
sensitivity coefficients are functions of the unknown parameters. As a result, the analysis of
the sensitivity coefficients and of the determinant of the matrix JTJ is not global, that is, it is
dependent on values chosen in advance for the unknown parameters. The same values studied
by Mikhailov and Özisik (1984) were used in the analysis presented below. They are ε = 0.2,
Lu = 0.4, Pn = 0.6, Ko = 5.0, Biq = Bim = 2.5 and Q = 0.9.

For the solution of the direct problem given by equations (1), we considered the Classical
Integral Transform Technique (Mikhailov and Özisik, 1984). The solution was obtained by
taking into account as many eigenvalues (including the complex ones) as required for its
convergence to a user prescribed tolerance of 10-6. The full eigenvalues spectra is accurately
computed though the Generalized Integral Transform Technique as applied to the solution of
coupled eigenvalue problems (Guigon et al, 1999). The sensitivity coefficients were computed
by finite differences, by using a forward approximation for the first derivatives.

We present in figure 2 the relative sensitivity coefficients for temperature and moisture
content, for the positions X=0, 0.5 and 1, with respect to the different unknown parameters.
The relative sensitivity coefficient is obtained by multiplying the sensitivity coefficient by the
value of the parameter that it is referred to. Therefore, the relative sensitivity coefficients can
be compared to the magnitude of the measured potentials and, as a result, it is easier to detect
relative small magnitudes and linear dependency.

An analysis of the temperature sensitivity coefficients shown in figure 2 reveals a strong
linear dependence of the sensitivity coefficients with respect to Biq, Bim and Lu, for each
measurement location. Similar behavior is observed with the temperature sensitivity
coefficients for Ko and ε. Therefore, it appears that the simultaneous estimation of Biq, Bim
and Lu is impossible if only temperature measurements of a single sensor are used in the
analysis. Such is also the case for the simultaneous estimation of Ko and ε. The temperature
sensitivity coefficients with respect to Pn and ε are very small, as compared to the other
sensitivity coefficients. Hence, temperature measurements do not provide useful information
for the estimation of Pn and ε. The magnitudes of the other temperature sensitivity
coefficients generally increase as the measurement location moves towards X=1.

We note in figure 2 that the moisture content sensitivity coefficients with respect to Ko
and ε are almost identical for the three measurement locations tested. As a result, the
simultaneous estimation of such parameters by using only moisture content measurements
does not appear to be possible. The other moisture content sensitivity coefficients do not
appear to be linearly-dependent for the position X=0. However, as the measurement position
for the moisture content moves towards X=1, we note a general decrease in the magnitudes of
the sensitivity coefficients and a tendency for the linear dependence of the sensitivity
coefficients with respect to Bim and Lu. The other moisture content sensitivity coefficients
are practically null at X=1.



Figure 2 – Sensitivity coefficients for temperature and moisture content at different positions
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The foregoing analysis of the sensitivity coefficients reveals that the most significant
temperature measurements for the estimation of the unknown parameters, should be taken
near the boundary X=1. On the other hand, the most significant moisture content
measurements should be taken near the boundary X=0. Also, due to the linear dependence of
several sensitivity coefficients, it is not possible to simultaneously estimate all the six
unknown parameters if only temperature measurements or only moisture content
measurements are used in the inverse analysis. It is interesting to note that, although the
temperature and moisture content sensitivity coefficients with respect to Ko and ε are linearly
dependent, their simultaneous estimation might be possible. Such is the case because for each
row of the sensitivity matrix, the elements (sensitivity coefficients) with respect to Ko and ε
are proportional; but the proportionality constant changes from the row containing
temperature sensitivity coefficients to the rows containing moisture content sensitivity
coefficients. As a result, the columns of the sensitivity matrix are not linear dependent if both
temperature and moisture content measurements are used in the analysis.

Figure 3 presents the variation of the determinant of the matrix JTJ for different number
of sensors. The temperature sensors were located near the boundary X=1, while the moisture
content measurements were taken near the boundary X=0, as a result of the analysis of the
sensitivity coefficients discussed above. Figure 3 shows that, as expected, det(JTJ) increases
as more sensors are used in the analysis. Such is the case because more information becomes
available as more sensors are used for the estimation of the six unknown parameters and,
hence, more accurate estimates can be obtained. After a very large increase in det(JTJ) for
small times, the rate of increase of det(JTJ) is reduced for larger times and basically det(JTJ)
becomes constant for times greater than 10.

Figure 3 – Transient variation of det(JTJ) for different number of sensors.

For the results presented below, involving the estimation of the six unknown parameters
by using simulated measurements, we considered available the transient readings of three
temperature sensors located at X=1, 0.9 and 0.8, and three moisture content sensors located at
X=0, 0.1 and 0.2. The final experimental time was taken as tf=10, since det(JTJ) does increase
significantly for larger times. During the time period 0 < t ≤ 10, we considered available 80
transient measurements per sensor.

The simulated experimental data was obtained from the solution of the direct problem
given by equations (1) at the measurement locations, by using prescribed values for the
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unknown parameters. The data generated in such manner is considered as errorless. In order
to simulate measurements containing random errors (M), we added to such errorless
measurements (Mexa) an error term in the form

M = Mexa + ωσ (9)

where ω is a random variable with normal distribution, zero mean and unitary standard
deviation and σ is the standard-deviation of the measurements. We note that M represents
temperature as well as moisture content measurements.

For the estimation of the unknown parameters, we utilized the Levenberg-Marquardt
method of minimization of the least-squares norm, as described above. The subroutine
DBCLSJ of the IMSL Library (1987), based on such method was used in the present work.

Table 1 illustrates the results obtained for the estimated parameters by using
measurements with different levels of random error, including σ=0 (errorless measurements)
and σ=0.01 Mmax, where Mmax is the maximum value of the measured temperatures and
moisture content. The initial guesses used in the iterative procedure of the Levenberg-

Marquardt method, were taken as Lu0 = 1.0, Pn0 = 0.06, Ko0 = 3.0, 3.5  Bi  1.5,  Bi 0
m

0
q == and

ε0 = 0.02. An analysis of Table 1 reveals that accurate estimates can be obtained for the six
parameters of interest for Luikov’s formulation of the physical problem under picture in this
paper.

Table 1. Estimated parameters obtained with the Levenberg- Marquardt method

Parameters Exact Estimated
σ=0

Estimated
σ=0.01 Mmax

Biq 2.5 2.5000 2.5088
Bim 2.5 2.5000 2.5100
Lu 0.4 0.4000 0.3996
Pn 0.6 0.6000 0.6010
Ko 5.0 5.0000 5.0062
ε 0.2 0.2000 0.1988

CONCLUSIONS

In this paper we presented the solution of an inverse problem of parameter estimation in
drying. The one-dimensional physical problem considered here was formulated with Luikov’s
model of heat and mass transfer in capillary porous media. The resulting direct problem was
solved with the Classical Integral Transform Technique by using as many eigenvalues,
including the complex ones, as required for convergence.

The present parameter estimation problem was solved by using the Levenberg-Marquardt
method of minimization of the least-squares norm. An analysis of the sensitivity coefficients
and of the determinant of the matrix JTJ shows that it is necessary to take temperature and
moisture content measurements in order to estimate simultaneously the Luikov number, the
Posnov number, the Kossovitch number, the phase change criterion and the Biot numbers for
heat and mass transfer. Also, the number and location for the sensors, as well as the duration
of the experiment can be estimated from such an analysis.

The use of simulated temperature measurements containing random errors shows that
accurate estimates can be obtained for the unknown parameters with the present approach.
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