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Abstract. In order to achieve a complete use of the comparative advantages of microsatellites,
it is advisable to endow them with autonomous means of orbit control. (Brito &
Murgio,1997). Pulsed plasma thrusters are among the most convenient solutions for station
keeping, drag compensation, de-orbit and other orbit control alternatives. Ground
qualification of this kind of engines requires the impulse bit measurement by means of static
firing tests. In this work, a  structural and functional analysis of a test stand under
development is carried out aiming to assess the performances of pulsed plasma thrusters,
mainly by impulse bit determination. A simplified model of the test stand is defined,
corresponding eigen modes and frequencies are determined and the dynamic response under
pulsed loading is computed, both in the time domain, by using the modal decomposition
technique, and in the frequency domain, through spectral analysis techniques. The obtained
results allow, at a preliminary level, the adjustment of the test stand design concept so as to
optimize the  measurement technique.
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1. INTRODUCTION

       The aim of this paper is to analyze, from the structural dynamics point of view, a test
stand based upon a resonant blade as a sensing device of observable mechanical effects (Fig.
1). The concept is proposed as a low cost alternative and something similar does not seem
having previously been reported, according to a literature review (Cubbin ,1996; Meckel et
al.,1996; Paccani, 1996; Woodruff & Chisel, 1973; Ziemer, et al., 1996).  Basic performances
to be determined by means of static tests are the average thrust and the impulse bit, a
measurement range being estimated for the average thrust between 0.1 and 10 mN. The



assumption is made that by mounting the ablative pulsed plasma thruster (APPT) atop the
resonant blade and taking advantage of its pulsed working feature will allow the evaluation of
these performances, within a prescribed accuracy, where nominal values for the thruster to be
tested in this test stand, are shown in Table 1. (Dean et al, 1998).

 Figure 1:  Scheme test stand of resonant blade

Table 1.  Characteristics of the thruster to test

Name Units P4 S

µ-Sat

Impulse [N-s] 10000

Mass total of the satellite [kg] 50

Mass of  thruster

(propellant + operate)

[kg] 5

Solid propellant --- Teflon

Mass of the propellant [kg] 2.2

Specific impulse [s] 1500

Bit impulse (Ibit) [µN-s] 200

Push Average [mN] 0.5

Frequency [Hz] 2.5

Duration of the bit [µs] 1-100

Mass ablationed for Ibit [µg] 13.3

External power [W] 50

Capacitor [µF] 4.7



2. RESONANT BLADE TEST STAND

2.1. General theoretical model

       A mathematical model is proposed based on the following assumptions: H1): Firstly, a
discrete model of the system is used, i.e., one whose elastic and inertial properties can be
described by a finite group of parameters. The structure defined by the flexible blade
supporting the APPT, considered as a cylindrical block of M mass and a transverse (with
respect to an axis perpendicular to the plan of motion) moment of inertia J, is discretized as a
2 degrees of freedom (d.o.f.) system; one for translational and the other for angular motion.
The inertial masses, composed by the APPT and the mechanical interfaces with the resonant
blade, is modeled as located in the free end of the resonant blade. H2): A LTI (Linear Time
Invariant) system is considered; the motion can then be described by means of a system of
second order ordinary differential equations with constant coefficients. H3): It is assumed that
the system has a Rayleigh proportional damping.

       Accordingly, the system equations of motion, as derived from the Lagrange formulation
(Clough & Penzien, 1975) , become:

         M  )(tu��  +  [ ]C  )(tu�  +  [ ]Κ  u(t)  =  (t)P                                                                     (1)

[ ]M : generalized mass matrix.  [ ]C : matrix of damping coefficients.  [ ]K : stiffness matrix of

the
 blade.   ( )tP : generalized  force vector acting upon the system.   ( )tu : generalized displacement

vector of the system.
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The obtained matrices are, in general, non-diagonal.

( ) ( )t , T
t

F :generalized  load  vector (force and moment). x(t) , θ(t): generalized vector of

displacement (translation and angular displacement). M: mass inertial of thrusters.  r: radius of
thrusters, considered as a cylinder. Jc: thrusters mass moment of inertia.   Cij : damping matrix
coefficient.    Kij : stiffness matrix coefficient.

2.2. Preliminary sizing of the APPT test stand

       The blade was pre-sized so that the displacements and rotations would be small enough to
justify the hypothesis which suggests the use of the Lagrangian linear strain tensor without
taking into account second order geometrical effects, as those resulting from the weight that
manifests as a coupling between the flexural moment and the axial load and lead to the
necessity of formulating the mechanical equations of the system in the deformed state. This
situation has not been considered in this first approach. An in-house available software was



used to check that the preliminary sizing of the resonant blade conforms to the adopted
hypothesis well within the accuracy required by standards and specifications for the test stand
qualification. The design criterium for the preliminary sizing is the following: the first natural
frequency of the system must coincide with the APPT activation pulsation frequency.
A) Thruster dimensions, considered as a cylinder:
      radius r = 0.005 m,   length l = 0.20 m,   Mass M = 2,5 kg.
B) Resonant blade:
     Material: Aluminium,   E = 7.1 x 1010 Pa,   ρ = 2.5 x 103 kg / m3,   ν = 0.34
     Section:  rectangular,   Thickness: b = 0.003 m,   Width: h = 0.03 m,   Height: L = 0.150 m.
Parameter calculations:   A) Thruster: J = 0.0161 kg.m².    B) Resonant Blade:
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I : blade cross section minimal moment of inertia.

       Assuming proportional damping of Rayleigh (Humar, 1990).   and adopting: ξ  = 0.02

   [C] = α [M] + β [K]              ;              α = 0.87175      and     β = 0.0001858

ξi  :  damping factor associated to the i-th mode.              α β ,   :   proportionality coefficients.

       with which the generalized matrices become:
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2.3. Natural modes and frequencies

       For the case of free vibration the undamped system is described by (Clough & Penzien,
1975):

[ ] ( ) [ ] ( )M Kt  ü +  u =  0t                                                                                                           (3)
where the natural frequencies of vibration result from the characteristic equation:

K  -   M   u  = tλc hbg 0                                                                                                         (4)

λi :  square of natural frequency associated to the mode φi .   ωi :  natural frequency associated
to the mode φi .    The eigenvalues are:

 
1λ = 

1

2

ω  =  0.0606E04   ;  
2λ  = 

2

2

ω  =  3.6484E04  ;  1ω  = 24.6167   ;  
2ω  = 191.0082

       and considering that:   f = 
ω
π2.

          and          T = 
2.π
ω

f  :  undamped natural frequency in hertz.              T : undamped natural period in second (s).
       we obtain:

                  f1 =   3.9179 Hz          ;          T1 =  0.2552 s



                                f2 =   30.4     Hz         ;           T2 =  0.0329 s
       The matrix whose columns are the eigenvectors, i.e., the natural vibration modes of the
system, is the modal matrix [φ ], given by:

          [ ]φ  :  eigenvector matrix.                                         φi  :  i-th eigenvector.
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2.4. State variables equations of the system

      The Equations (1) and (2) can be written in terms of state variables of the system

         x�  =   [ ]A  x t )(
 + [ ]  B q

t )(
 (5)

         y
t )(

  =  [ ]F  x t )(
                                                                                                     (6)

being q
t )(

the input function to the dynamic system, y
t )(

 the output, and x t )(
 the state vector

of the system (Stum & Kirk, 1994).

2.5. State variables  of the system

       The state vector:   [ x t )(
]T   =   [x(t) , θ(t) , 

.
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.
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       The input function: [q
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       The output vector is the same of the state vector

with which the generalized matrices become:

        [ ]A  = 



















−−
−−

471639.499874.3979.193711.215242

274991.01383.479.14791.17578

1000

0100

        [ ]B  = 



















−
−

052631.101052631.500

052631.5652631.000

0000

0000

             ;             [ ]F  = 



















1000

0100

0010

0001

      with null initial conditions



2.8. Strain sensing model

      The impulse bit will basically be obtained in the following way: the amplitude of the
displacement in the free end of the blade will be related to the strain measured by a
piezoceramic transducer located close to the base of the resonant blade (clamped end).
      When it is stressed mechanically by a force, it generates an electric charge. If  the
electrodes are not short-circuited, a voltage associated with the charge appears.
The mechanical and geometric characteristics of the used sensor are:

      Es = 6.2 x 1010 Pa,               ρ = 7.8 x 103 kg / m3

      Length : Ls = 0.0249 m,       Width : hs = 0.006 m,        Thickness bs = 0.0005  m

       When a bilaminar element is forced to bend, one layer will be in tension while the other is
in compression. Since the two layers are polarized in opposite directions, the opposite stresses
in each layer will produce electrical outputs of like polarity. In turn, the strain is determined as
related to the electric potential difference between the upper and lower conducting plates of
the sensor in its bended configuration. It is assumed that the transducer is perfectly glued to
the blade so the strain at the interface has an unique value, i.e.  εl  =  εs

       Additionally, by assuming a vanishing small transducer (the blade cross section middle
line coincides with that of the composed section and will not materially affect the vibrational
characteristics of the structure, the transducers are instruments with high natural frequencies),
the stress field across the transducer is given by:

σ ε
ybg= 2E

b
S                                                                                                                        (7)

       Now, by taking into account the proportionality between electric fields and stresses in
piezoelectric materials, represented by a coupling constant g (Piezo Systems, 1993), it follows

                                                                                                                                            (8)
Where:
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Eq. (7) then becomes
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Considering that the strain ε  by flexion of the resonant blade may be written as

  = 
M

E  . W
baseε                                                                                                                       (10)

W being the flexural resistant module, given by

( ) ( )dyyygV ∫=     σ
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where b represents the thickness of the resonant blade, and I the cross section minimal
moment of inertia.    With :  F . L M  M base += ,  where L is the length of the blade. By using

Eq. (11) and Eq. (10) one finally obtains:
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    The transducer was also assumed to be an ideal one, i.e., it does not suffer neither saturation
nor any loss in response linearity.
       The indicated voltage thus depends on the capacitance of the transducer and indicator
circuit. This fact, together with the high impedances normally prevailing in these circuits,
determines the approach in the design of piezoelectric transducer and their associated
electronic equipment. Owing to the finite insulation resistance, the generated charge gradually
leaks away and there is therefore no steady-state response.
       At frequencies well below to the transducer natural frequency fr, (the transducers are
instruments with high natural frequencies) the equivalent circuit can be simplified as shown in
Fig. 2

Fig.2 Equivalent circuit of piezoelectric transducers at frequencies
below mechanical resonance.

          Here q represents the electric charge generated in the transducer, CE and RE represent
the capacitance and shunt resistance of the transducer element, CL and RL are the capacitance
and resistance of the load, CC is the capacitance of the cable between transducer and load, and
V represents the observed voltage.
          The numerically solved differential equation in the model for the measurement circuit
is:






 −= i
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CR
1

dt
di

EE                                                                                                                                (13)

where for all practical purposes the resistances and the capacitances can be lumped into the
total parallel resistance RE and the total parallel capacitance CE.



3. DYNAMIC BEHAVIOR – SIMULATION RESULTS

          Once the system was preliminary sized, the general theoretical model allowed its
simulation by making use of suitable software, as available in the U.N.R.C. (National
University of Rio Cuarto) School of Engineering.
          The simulation of the dynamic behavior was made for different input alternatives: (a) a
train of rectangular pulses of the same sign with a frequency corresponding to that of the first
natural mode, each pulse conforming an impulse bit of 200 µNs; (b) a white noise
characterizing a base motion of microseismic origin with a variance of approx. 20E-6 g; (c)
the combined action of (a) and (b). Graphs for the cases (a), (b) and (c) of the following
quantities are shown in Fig. 4, 5 and 6, respectively: strain transducer output vs. time and
strain transducer output vs. frequency. The combinations of  1 N x 200 µseg and 200 N x
1µseg were analyzed, too; the aforementioned Figures correspond to the first of these
combinations.
         The influence of the impulse bit on the strain transducer output level is observed in Fig.
3 where the results correspond to simulations performed by keeping the same pulse width
(200 µseg) while varying the instantaneous constant thrust levels.

         These simulations made possible to predict the amplitudes of the strain transducer
output signal. This signal represents the integrated effect of the APPT thrusting action upon
the resonant blade free end, together with the mechanical perturbations of microseismic
origin. Neither perturbations of electric origin nor measurement errors were taken into
account; it was understood that they do not need to be considered, given the purpose of this
preliminary study, mainly aiming to the dynamic behavior analysis of the test stand  system.
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Fig. 3.   Bit Impulse vs Transducer Output
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Fig. 4.  Response characteristics – Input case (a)

Fig. 5.  Response characteristics – Input case (b)

Fig. 6.  Response characteristics – Input case (c )
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4. CONCLUSIONS

       Looking at the design concept, the obtained results where the coincidence between the
APPT frequency of pulsation with the first natural frequency of the system was sought after,
show that the objective of determining the impulse bit by measuring the strain transducer
output amplitude, can be reached with S/N (Signal/Noise) ratios which do not jeopardize, in a
first approach, the obtaining of current accuracy levels for this kind of test stands
(approximately 0.2%).

       It should be stressed that the model described throughout this paper is a simplified one
aiming at assuring orders of magnitude. A more detailed study should lead to a more rigorous
modeling, embracing the system as well as the excitation due to the thrust and the
perturbations which should be expected. Indeed, modal testing techniques can give rise to the
possibility of improving the model through the adjustment of the theoretical damping factors,
mass and stiffness matrices of the system as a function of measured modes and natural
frequencies. Further improvements can also be achieved by using numerical filtering
techniques that will have the effect of increased S/N ratio, which in turn would allow the time
domain identification of the excitation profile.
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