
VISUALIZING 3D VECTORS USING JAVA

Silvana A. Barbosa
Instituto de Aeronáutica e Espaço - Centro Técnico Aeroespacial
12.228-904 - São José dos Campos, SP, Brazil
Marcio L. X. dos Santos
Coordenadoria Central de Informática - Universidade de Taubaté
12.020-270 – Taubaté, SP, Brazil

ABSTRACT. The purpose of this work was to develop a computer graphics representation of
the vector properties of a given three-dimensional field through JAVA computational
language. Although this problem had been addressed elsewhere in the past (see references),
the new opportunities for dynamic loading and displaying vector fields in the context of
Intranets through JAVA language methods seemed worth to explore. The capability of the
resulting method to generate fast outputs containing all the information of the vector field
makes it attractive for interactive applications.

Key-words: Visualization, Vector fields, Java.

1. INTRODUCTION

Visualization is a method of computing. It transforms the symbolic into the geometric,
enabling researchers to observe their simulations and computations. Richard Hamming
observed many years ago that "The purpose of [scientific] computing is insight, not numbers"
(Computer Graphics, 1987). The goal of visualization is to leverage existing scientific
methods by providing new scientific insight through visual methods.

In this work several techniques of graphics computing were applied in a CFD
("Computational Fluid Dynamics") problem, the visualization of three-dimensional vector
fields (Barbosa, 1998).

Discrete values of a generating function for a vector field can be obtained by numerical
analysis, but the use of a representation which allows quick identification of undesired outputs
may save a considerable amount of time and effort.

This work describes a graphical method to visualize vector field distributions in 3D,
using a pyramidal form to represent a 3D arrow with fixed proportions to visualize the
magnitude and direction of the vector field at each point at which it is known, Fig.1.

Figure 1 – Geometrical representation of a vector quantity.

The main preoccupation in choosing the computer language to be used in the software
development was the question of portability. The wish was that the computer language was
the most possible platform independent, to avoid troubles when changing of computational
equipment. So the chosen language was JAVA.

2. GEOMETRICAL MODEL

The basic literature of physics sciences in electromagnetism, hydrodynamics, etc points
to various methods in visualization of vector fields. Most of them to represent two-
dimensional fields.

According to (Dos Santos, 1979), adopting a convenient 3D image for the vector quantity
at a point in the 3D space, it is possible to accommodate all the pertinent field information
accurately and produce a satisfactory field pattern to represent this distribution

Computer graphics representation of vector fields were also proposed recently: (Leeuw,
W. C., and Wijk, J. J., 1993) (Simkin, Vector Fields Limited, 1995) (Boring E., and Pang A,
1996). Dos Santos pioneered the way – see (Nassif, N., and Silvester, P. P., 1980) – with a
method restricted to the display techniques available in the 70s while the recent works focus
on modern interactive display techniques. The ideas present by all of them, however, concur
to stress the importance of computer graphics representations of 3D fields. In this work, we
developed a novel approach to this basic problem, trying to make use of the capabilities of the
JAVA language and of the computer graphics techniques. Both, the geometrical model and
the programming technique will not be discussed in detail in the present paper. The reader
who is wishing to understand the details of the geometrical model and those pertaining to the
computer program is referred to the works of (Barbosa, 1998) and (Barbosa and Dos Santos,
1999).

3. GENERAL DESCRIPTION OF THE SYSTEM

ViCamp is a software that was developed in JAVA, with the objective of visualizing 3D
vector fields.

In the software development, it would be necessary to create routines that doing, among
other things, the input data reading, calculate the vector co-ordinates according to the
geometrical model presented, the transformation and displaying routines.

The system is called ViCamp and it is composed of 6 classes, Fig.2.

ViCamp

FileFormatExceptionVector3DViCamp Transf Filelister EndsWithFilter

Figure 2 - ViCamp Project and its Classes

3.1 ViCamp

It is the main class of the system and it is composed by various methods. ViCamp is
responsible for the painting (displaying) definition and creation, its format, colours,
dimensions, options menu.

The system waits for some event and so the handleEvent method is actioned. From this
method the actions are taken – see Fig. 4.

Figure 3 - Initial Display

Considering that the processing speed (performance) in JAVA is not as high as a
compiled language, the use of techniques that became lower the exhibition and images
manipulation time were used.

One of the features that JAVA offers, which was required in this work, is the Double-
Buffering: it creates a white image, associated with this image a graphics context that may be
compared to a blackboard where the paints are being drawn. This technique reduces the
exhibition and manipulation time of images.

After the data file is defined, the run method is actived. It is responsible to determine the
sequence that the pyramid faces will be drawn, according to the Segment Visibility and Image
Degeneration (Barbosa, 1998).

The repaint – update/paint – method is called when it is necessary to redraw the image.
For the image creation the paint3D method that belongs to the Vector3D class is called.

Figure 4 – Menu: Available Options.

Figure 5 - Menu for Input File Choice.

3.2 Vector3D

This class is composed of the following methods: Vector3D (constructor - a method that
is called automatically when a new instance of a class is created. It has the same name as the
class), determ, add, addVert, calc, cleanVert, findBB, paint3D, ptTela, transform.

It is responsible to calculate the three dimensional model. First, through its constructor, it
reads an ASCII file containing a set of data in real format, given by the user in this format:
 1ª line:
 npts → total number of mesh points
 2ª line to nptsª +1 line :
 xi yi zi xii yii zii

 where:
 xi, yi, zi → co-ordinates of the 3D mesh
 xii, yii, zii → co-ordinates of the vector property in that point

The program will do this data reading, and the treatment of these values to get the
graphical representation. The representation form to each field point will be pyramidal – an
arrow drawn in a 3D way. The first image created will be according to the read values. After
that, the user can manipulate this image through rotations in one or more axis, translation, and
the zoom options, being able to observe better the data behaviour in several situations. The
right-hand axis system was used according to the geometrical model (Barbosa, 1998).

Vector3d Methods. The methods, which compose the Vector3D class, will be described,
except the constructor (commented at once).

Calc. It is called when some image transformation occurs. From the data reading done by
the constructor, the vector length, angles and magnitude are defined.

Know that

 zvyvxvV 222 ++=

the vector total length is normalized according to the highest V value, encountered by this
class constructor:

 defV
V

V
newV **

max
=

where initially

 def = 1

By definition it was considered that

 a = V
 b = V/3
 h = V
 l = V
 L = l + h

Because the length of each vector is normalized with regard to the maximum magnitude
sample, in case of vector fields in structured mesh, this normalization attends to the need of a
good visualization of the entire field. But when the mesh is unstructured, sometimes the user
perception of all the points becomes difficult. The menu option VectorDefinition, enables the
changing of the vector total length. In this case, the user has the option to enlarge or reduce
the vector total length, through the VectorDefinition/EnlargeVector, VectorDefinition/ Reduce
Vector options. It is done by changing the def variable value. From there the transformations
will be made considering this new length vector definition. At any moment the user can return
to the original vector length through the menu option VectorDefinition/OriginalVector.

Figure 6 - Vector Length.

Paint3d. It forms the image by drawing the vector field in the graphics context. Each
pyramid face is a triangle except the base, which is a quadrilateral. In this case determ
method is called to define the drawing sequence, to avoid line crossing, like in the following
example:

Figure 7 – Wrong Drawing Sequence.

Determ. It avoids line crossing inside the pyramid base. The base is divided into two
triangles, and then the determinant of each triangle is calculated thus verifying the normal
vector direction.

The triangle area calculus through its determinant is:

133

122

111

2

1

yx

yx

yx

±

So, for each triangle it is associated a 3x3 matrix, that represents the area double.
Through the determinant calculus the normal vector direction is found:

yyy

xxxA

321

321

111

det =

yyy

xxxB

431

431

111

det =

The most interest in this calculation is the resulting signal obtained from the
multiplication of the two determinants. If the result is positive it means that the two normal
vectors are in the same direction and there is no need to change the drawing sequence. But if
the result is negative it will be necessary to establish criteria to define a new drawing
sequence. At first the position of the 1 and 2 co-ordinates are changed and the determinant
calculus are redone. A new test is done and if the negative result persists, it means that the
points 1 and 2 are in the same diagonal and so it will be necessary to change the 2 and 3 co-
ordinates positions – see Fig.8.

Findbb. It finds the maximum values for x, y, z.

Pttela. It transforms the edges values calculated to the vector field in display co-
ordinates, and keeps the drawing in scale.

changing the 1 and 2 co-ordinates: changing the 2 and 3 co-ordinates:

Figure 8 – Co-ordinates change 1 and 2, 2 and 3.

3.3 Transf

The methods, which are responsible by the image transformations, are in this class: scale,
translate, zrot, xrot, yrot, and ajuste. These methods were implemented according to
(Harrington, 1983). The right-hand axis system was used.

Scale. It is called when the Zoom option is chosen. All the co-ordinates are multiplied by
the scale factor received like an argument by this method.

Translate. It is called when the Translate option is chosen. It is added ± 50 pixels to the
axis indicated by the option. This method is too called when the image suffers any other kind
of transformation, to adjust the image into the display. The values to be added to the axis are
calculated by the ajuste method.

Zrot. When rotating Z axis, all the co-ordinates belonging to this axis have no change,
while the X and Y co-ordinates behave the same manner as the 2D case. The homogeneous
co-ordinates matrix is used.

θθ
θθ

cos**

cos

ysinxy

sinyxx

+=
−=

Xrot. When rotating X axis, all the co-ordinates belonging to this axis have no change,
while the Y and Z co-ordinates suffer some changes. To rotate on the X axis such that Y
becomes Z, the homogenous co-ordinates matrix is used.

θθ
θθ

cos**

cos

zsinyz

sinzyy

+=
−=

Yrot. When rotating Y axis, all the co-ordinates belonging to this axis have no change,
while the X and Z co-ordinates suffer some changes. To rotate on the Y axis such that Z
becomes X, the homogenous co-ordinates matrix is used.

θθ

θθ
cos**

cos

zsinxz

sinzxx

+−=
+=

Ajuste – It calculates the necessary adjust to the image into the display. This method is
called when some transformation is done.

3.4 Filelister

It is called when the "Open" option is activated. It creates the panel that shows the files
contained in a directory.

3.5 Endswithfilter

It defines what will be exhibited into the created panel:
 . files with obj extension and
 . the directories list.

4. CONCLUSIONS

The goal of this work was to develop a software to represent graphically vector properties
of a certain 3D vector field, using the computational language JAVA. The focus of this work
was divided into these two themes: the implementation of the graphical method and exploring
this new concept about computational language, JAVA.

One of the requisites of the software is that it presents user-friendly interface and the
results were next to the intuitively wished by the user. For those reasons the Menus were
constructed to be simple and self-explained.

One of the project advantages is about the low disk space required. The necessary files to
the system installation are the ones with class extension and they require about 40kb. The
source files (.java) require about 45kb.

The implementation does not make use of the data reading techniques suggested in
(Michaels, C. and Bailey, M., 1997) although efforts had been made in order to reach the five
goals proposed in that paper.

5. EXAMPLES

Displays showing the representation of some vector fields with transformations are given
below. The Computational Fluid Dynamics group of CTA/IAE generated the data file, that
represents the velocity in a region of a Transonic Aerodynamics Tunnel.

REFERENCES

Barbosa, Silvana, A., 1998, Visualização de Campos Vetoriais - Uma Aplicação em JAVA
Master of Science Thesis - Instituto Tecnológico de Aeronáutica, São José dos Campos,
SP, Brasil.

Barbosa, Silvana, A., and Dos Santos, M. L. X 1999, Visualization of 3D Vector Fields – A
 JAVA Application, Proceedings of the EuroGraphics UK Chapter 1999.
Boring E., and Pang A., 1996, Directional Flow Visualization of Vector Fields, Proceedings

of the IEEE Visualization 96.
Computer Graphics, 1987, Special Issue on Visualization in Scientific Computing, vol 21,nº6.
Dos Santos, M. L. X, 1979, The Computation of Wave Guide Vector Fields and the
 Generation of Fields Patterns using Computer Graphics”-Ph.D. Thesis , University of
 Leicester.
Harrington, Steven, 1983, Computer Graphics - A Programming Approach McGraw-Hill

Book Company.
JAVA -Mito e Realidade, 1997, Informática Exame, Ano 12, nº 134,pp.24/30.
Leeuw, W. C., and Wijk, J. J., 1993, A Probe for Local Flow Field Visualization, IEEE

Visualization93 Conference.
Michaels, C. and Bailey, M., 1997, VizWiz: A JAVA Applet for Interactive 3D Scientific

Visualization on the Web, Proceedings of the IEEE Visualization97.
Nassif, N., and Silvester, P. P., 1980, Graphic Representation of Three Component Vector

Fields, Computer Aided Design, vol 12.
Simkin, Vector Fields Limited, 1995, Visualization of Three Dimensional Vector Fields and

Functions, IEE Colloquium on Visualization of Three Dimensional Fields.

