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Abstract. A unified formulation for both compressible and nearly incompressible viscous flow
is presented. The new method is a subtle but relevant modification to the authors’ previous
formulation for all speed flow. The new discretised equations assume a simpler form, leading
to an easier and more efficient computer implementation. The main features remain the same:
the use of a segregated scheme, the choice of mass-velocity (density*velocity), internal energy
and pressure as dependent variables, and the introduction of a strongly implicit pressure
equation. The method is applied to the analysis of laminar flows governed by the Navier-
Stokes equations. Computations of transonic and supersonic viscous flows around a
Naca0012 airfoil are presented.

Keywords: Computational Fluid Dynamics, Aerodynamics, Adaptive Methods.

1. INTRODUCTION

Most numerical methods for compressible fluid dynamics present difficulties when
applied to low speed (nearly incompressible) flows. The difficulties originate from the fast
propagation of pressure waves, as flow conditions approach the incompressible limit. Nearly
incompressible flows, i.e. flows characterised by very small Mach number, are usually
approximated as fully incompressible. Thus, compressibility effects are eliminated at the
modelling level, prior to considering any particular discretisation method. In such a context,
pressure is no longer a thermodynamic property related to density through a state equation.
Most importantly, the pressure hyperbolic character and the associated wavelike propagation
disappear from the model. Instead, pressure takes an elliptic character and must be determined
from the momentum balance and boundary conditions, in such a way that a solenoidal
velocity field is enforced.

In view of such physical and mathematical differences, it is not surprising that methods
for the discretisation of compressible and incompressible flows have developed
independently. The CFD literature reflects this dichotomy and most papers are devoted
specifically to either compressible or incompressible applications. Nevertheless, the
development of methods for a wide range of Mach number is important to the analysis of
many flow problems involving simultaneously both the compressible and the nearly
incompressible behaviour. In fact, even in the high-speed compressible flows of the aerospace



industry, the nearly incompressible behaviour is present near solid walls and leading edges,
where the local fluid velocity is small compared to the local sound speed.

Different approaches have been pursued in the development of methods for all speed fluid
flow. Karki & Patankar (1989) and Maliska & Silva (1989) introduced finite-volume pressure
based methods obtained through the extension of schemes originally developed for
incompressible problems. The works of Chen & Pletcher (1991) and Azevedo & Martins
(1993) are examples of classical finite-volume compressible methods modified in order to
deal with incompressible flows. In the finite element context, Zienkiewicz & Codina (1995)
used fractional steps and characteristic-Galerkin approximations to derive their all speed
formulation.

This paper presents a unified treatment for both compressible and nearly incompressible
problems. The method is a subtle but relevant modification to our previous formulation for all
speed flow (De Sampaio & Moreira, 1998) and (Moreira, 1998), leading to a simpler
computer implementation. An important feature of the method is the implicit time
discretisation of the mass balance and of the pressure terms appearing in the momentum and
energy equations. Petrov-Galerkin weighting functions, derived from a least-squares
approximation, are employed in the momentum and energy weighted residual statements. The
resulting formulation automatically introduces streamline upwinding and pressure stabilising
terms.

A segregated solution algorithm is employed. Once the pressure field is found, the
scheme proceeds with the computation of the mass-velocity (density*velocity) and internal
energy fields. The cyclic update of pressure, mass-velocity and internal energy requires the
solution of symmetric systems of equations. This is accomplished using a preconditioned
conjugate gradient solver.

The method is applied to the analysis of laminar flows governed by the Navier-Stokes
equations. Computations of transonic and supersonic viscous flows around a Naca0012 airfoil
are presented.

2. GOVERNING EQUATIONS

The equations for conservation of mass, momentum and energy are defined on the open
bounded domain Ω, with boundary Γ, contained in the nsd-dimensional space. For a =1,...,nsd
and b=1,...,nsd, the governing equations can be written in Cartesian co-ordinates as follows:
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The constitutive equations for viscous stress and heat-flux are, respectively,
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The model is closed specifying a state equation for the fluid. The state equation for an
ideal gas is assumed in this work,

( ) ep ργ 1−=                                                                                                         (6)

where vp cc=γ  and Tce v= .

In the above equations au , p, e, ρ  and T denote the velocity, pressure, internal energy,

density and temperature fields, respectively. The mass-velocity (density*velocity) is
represented by aa uG ρ= . The gravity field is ag . The symbols vc,, κµ  and pc  represent the

fluid properties of viscosity, thermal conductivity, specific heat at constant volume and
specific heat at constant pressure, respectively.

Note that the equations above are written in dimensional form and include density as
dependent variable in the balance of mass. However, in order to derive a method suitable for a
wide range of Mach number, we decided to introduce pressure as a main dependent variable
instead. Thus, the state equation is used to eliminate density from the mass balance, replacing
it by pressure and internal energy. As we shall see, this will permit the derivation of a strongly
implicit pressure equation, which is of foremost importance in regions of low Mach number.

Let us define non-dimensional variables, denoted by the superscript  ‘*’,  which are
related to the original dimensional variables according to
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where the subscript  ‘0’ indicates reference values and L is the reference length. In terms of
the non-dimensional variables, the governing equations can be written:
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Note that using the mass balance and the state equation, the energy equation (10) can be
alternatively written as
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The constitutive equations for viscous stress and heat flux, and  the equation of state, take
the following non-dimensional forms, respectively,
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We have also introduced the non-dimensionalised thermodynamic properties
( )epu ∂∂= ρα 2

0
*  and ( ) 00

* ρρβ pee ∂∂= , and the non-dimensionalised gravity field

potential Lxg aa g−=*ϕ . The non-dimensional groups of Reynolds, Froude, Prandtl and

Eckert are given by
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In aeronautical applications it is usual to parameterise problems using the Mach number
M rather than the Eckert number Ec . For ideal gases the relationship between these non-
dimensional groups is ( ) 21 MEc −= γ .

The non-dimensionalised equations presented above are slightly different from those
originally shown in (De Sampaio & Moreira, 1998) and (Moreira, 1998). The difference
arises from a new definition of the non-dimensional modified pressure p*. The equations
presented here take a simpler form, leading to a more efficient computer implementation.

In the remainder of this work we shall deal exclusively with the non-dimensionalised
equations and the superscript  ‘*’ will be dropped.

3. THE DISCRETISATION AND SOLUTION SCHEMES

Linear Lagrangian finite elements are employed to represent the mass-velocity, pressure
and internal energy fields. The central feature of the method is the derivation of a discretised
equation for pressure, where pressure contributions arising from the mass, momentum and
energy balances are taken implicitly in the time-discretisation. The Galerkin method is used to
obtain the discretised pressure equation, whilst a Petrov-Galerkin / least-squares based
approach is used in the derivation of the discretised equations for mass-velocity and internal
energy. The problem is solved using a segregated solution procedure. Once the pressure field
is found, the algorithm proceeds with the computation of the mass-velocity and internal
energy fields. The cyclic update of pressure, mass-velocity and internal energy requires the
solution of symmetric systems of equations. This is accomplished with preconditioned
conjugate gradient solvers, suitable for parallel/vector implementation in supercomputers (De
Sampaio & Coutinho, 1999).



3.1 The strongly implicit pressure equation

Let us consider the following time-discretisation of the mass balance Eq. (8),
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and the fractional steps approximation of the energy balance Eq. (10), represented by
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In the above equations, the superscripts  n  and  n+1 denote the time-level and ∆t  is the
time-step. Here, the parameters 1θ  and 12 1 θθ −=  control the implicitness in the time

discretisation of the convective term (explicit for 1θ = 0 and implicit for 1θ = 1). Unless

otherwise stated, we shall employ 1θ =0.5 in our computations. The mass-velocity, pressure

and internal energy fields at time-level k are interpolated as k
jaj

k
a GNG =ˆ , k

jj
k pNp =ˆ  and

k
jj

k eNe =ˆ , respectively, where jN  represents the linear Lagrangian shape functions and
k

jaG , k
jp  and k

je  are the corresponding nodal values at time-level k. The thermodynamic

properties nρ , nα  and nβ  are evaluated as constants within each finite element (they are
obtained from the internal energy and pressure defined at the element baricentre). The density

2/1+nρ , also approximated as constant within each element, is computed using a Taylor series
expansion from time-level n and the balance of mass,
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Note that when splitting the energy balance into equations Eq.(17) and Eq.(18), we have
isolated the term representing the compressible contribution in Eq.(18). Equation (17), on the
other hand, retains the remaining terms, typical of incompressible applications. Substituting
Eq.(18) into the mass balance Eq.(16), we obtain
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The strongly implicit pressure equation is derived using the Galerkin method to
approximate the above equation, where the momentum balance is employed to express 1+n

aG



in terms of the various forces acting on the fluid. In particular, the pressure gradient
contribution to the momentum balance is taken at time level n+1. The name strongly implicit
pressure equation derives from the fact that the pressure terms arising from the mass,
momentum and energy balances are approximated using an implicit time-discretisation. This
introduces damping of pressure errors and permits retaining stability in the pressure
computation, despite ignoring the short time-scales associated to the fast pressure waves that
characterise nearly incompressible flows.

In the strongly implicit pressure equation below, the weighting functions iN  are the shape

functions associated to free nodal pressure variables pi
n+1. The boundary conditions

considered are pressure and mass flux. These are prescribed on non-overlapping parts of the
boundary pΓ  and GΓ , such that ppp Γ= on  and Gaa GnG Γ= on .
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3.2. Petrov-Galerkin / least-squares based discretisations

It is important to note that before Eq.(21) can be solved, one has to determine the internal
energy field e′ˆ  corresponding to the solution of Eq.(17). A Petrov-Galerkin / least-squares
based weighted residual method is applied to that end. Boundary conditions are internal
energy and heat-flux. These are prescribed on non-overlapping parts of the boundary eΓ  and

qΓ , such that eee Γ=′ on  and qbb qnq Γ= on . The resulting discretised equation is
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The Petrov-Galerkin / least-squares based weighted residual method is also used to
update the mass-velocity 1+n

aG . Mass-velocity and traction boundary conditions are specified

on GaΓ  and taΓ , such that Gaaa GG Γ= on  and ( ) taabeabab tnRp Γ=+− onτδ . The

resulting discretised equation is



( ) Γ+Ω







−












∂
∂

∆+





∂
∂

∆+

+Ω









+−

∂
∂

−Ω












∂
∂

−
∂
∂









∂
∂

+
∂
∂

∆

+Ω











∂
∂

∆−





∂
∂

∆−
∆











∂
∂

∆+





∂
∂

∆+

=Ω











∂
∂

∆+





∂
∂

∆+
∆











∂
∂

∆+





∂
∂

∆+

∫∫

∫∫

∫

∫

Γ

+

Ω

+

Ω

+

Ω

Ω

+
+

Ω

dtNdg
Fx

N
utN

x

u
t

d
R

p
x

N
d

x

p

xRx

N
uN

x

u
t

d
x

G
utG

x

u
t

tx

N
utN

x

u
t

d
x

G
utG

x

u
t

tx

N
utN

x

u
t

aia
n

rc

in
ci

c

n
c

e

n
ba

ab
n

b

i

a

n

b

n
ba

ec

in
ci

c

n
c

b

n
an

b
n
a

b

n
b

c

in
ci

c

n
c

b

n
an

b
n
a

b

n
b

c

in
ci

c

n
c

ta

1ˆ
1

ˆ
ˆ

1

ˆ
ˆ

ˆˆ1
ˆ

ˆ

ˆ
ˆˆˆ

1
1

ˆ
ˆ

1

ˆ
ˆˆˆ

1
1

ˆ
ˆ

1

2/1

211

1
1

1

2211

1

1
1

111

ρθθ

τ
δ

τ
θ

θθθθ

θθθθ

)23(1+∀ n
aiGfree

The final step of the segregated solution procedure is the computation of the new internal
energy field 1ˆ +ne . The Petrov-Galerkin / least-squares based weighted residual method is
applied to approximate the energy equation Eq.(11). After introducing the prescribed internal
energy and heat-flux boundary conditions, we obtain:
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3.3 The time-space adaptive procedure

When dealing with transient problems, the overall error in the solution is associated not
only to the spatial discretisation, but also to the time integration of the governing equations. In
this work we combine a remeshing scheme with the local time-stepping algorithm introduced
by De Sampaio (1993). This algorithm sets local time-steps based on the time-scales of the
convection-diffusion processes resolvable on a given mesh. These time-scales are estimated
according to local values of velocity and physical properties, and according to the local mesh
resolution.

The a posteriori error estimator proposed by Zienkiewicz & Zhu (1987) is used to
estimate the velocity gradient error and to guide the remeshing. The scheme is designed to
generate meshes containing a controlled number of elements, in such a way that the velocity
gradient error becomes evenly distributed. The remeshing procedure is fully automatic and
triggered during a transient analysis, whenever the relative variation of the estimated error
exceeds a preset value.

The local time-stepping algorithm is used in conjunction with the remeshing scheme.
This permits linking spatial and time-step refinement and naturally leads to a simultaneous



time-space adaptive procedure. Indeed, whenever the remeshing scheme creates some local
refinement to better resolve a particular flow feature, the time-step distribution is also adapted
accordingly, so that the corresponding time evolution can be appropriately followed.

4. NUMERICAL EXAMPLES

The formulation presented in the previous sections has been applied to the analysis of
transonic and supersonic viscous flows around a Naca0012 airfoil. The reference properties
and the reference velocity used for non-dimensionalising the problems are those
corresponding to the free stream. The airfoil chord is chosen as the characteristic length L.

Note that due to the presence of boundary layers, these flows involve a wide range of
Mach number. In the supersonic example, for instance, the local Mach number ranges from
zero (at the airfoil surface) to more than 2. The thermodynamic and transport properties of air
were used in the examples. Air viscosity was determined using Sutherland’s formula (Hirsch,
1988). A constant Prandtl number of 0.72 was assumed throughout.

The first example is a transonic flow with M=0.85, Re=500 and 00  incidence. A fixed
mesh, refined close to the airfoil surface, was used. The mesh contains 5328 nodes and 10238
elements. Mass-velocity and temperature are imposed at the inflow boundary whilst pressure
is imposed at the outflow. At the airfoil surface the no-slip velocity condition is applied
together with a uniform temperature corresponding to the free stream stagnation value.

Figure 1 shows the mesh employed and the friction coefficient along the chord. The result
obtained is in good agreement with the friction coefficient presented by Nigro et al. (1997).

Naca0012 (M=0.85, Re=500)
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Figure 1- Mesh and friction coefficient for a transonic flow around a Naca0012 airfoil.

The second example is a supersonic flow at M=2.0, Re=106 and 010  incidence. Here,
mass-velocity, temperature and pressure are imposed at the supersonic inflow boundary. The
no-slip velocity condition is applied at the airfoil surface, which is assumed adiabatic. No
boundary conditions are imposed at the supersonic outflow. In this example, we have
performed a transient, time-space adaptive computation. The remeshing procedure was
employed to construct meshes according to the estimated error on velocity gradients, whilst
local time-steps were adjusted according to the resulting element sizes and physical
conditions.



The transient was run from 0* =t  to 10* =t . At 10* =t  the computation is virtually at
steady state, with a residual of 0.001. Figure 2 shows a detail of the final adaptive mesh
(11318 nodes, 22205 elements), together with density and Mach number contours. In
particular, note the refinement on the frontal shock and boundary layer.
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Figure 2- Supersonic flow around a Naca0012 airfoil.

Figure 3 presents a comparison between the computed density field and the
corresponding experimental data obtained by Allègre et al. (1987). The comparison is made
on the straight line AB, which runs through the shock into the rarefaction zone. Note the good
agreement between the numerical and the experimental density data.
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Figure 3- Comparison between experimental and computed density data.



5. CONCLUDING REMARKS

A finite element formulation designed for the analysis of both compressible and nearly
incompressible fluid dynamics has been presented. The method is a subtle but relevant
modification to our previous formulation for all speed flow, leading to a simpler computer
implementation. The examples shown, involving a wide variation of Mach number,
demonstrate the effectiveness of the new formulation.

The numerical methods presented herein for 2D laminar flows naturally extend for the
study of 3D problems. Extensions to turbulent analyses are also possible, using either
Reynolds averaged equations or LES procedures.
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