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Abstract. Optimal elastic buckling loads of composite plates subjected to uncertain loading

conditions ar e considered. The applied loads ar e not �xed during the optimization se ar ch,

being allowed to vary within a certain class of admissible loads. A minimax formulation is

used and the buckling loads are maximized with resp ectto the �ber angles and minimized

with resp ectto applicable loading par ameterswhich describe the set of admissible loads. The

pr esentapproach has a major advantage of rendering the optimal buckling loads insensitive

to perturbations in the applied loads; this is highly desirable in applications where the loads

ar eunpredictable or varying in time.
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1. INTRODUCTION

Composite materials are increasingly replacing traditional materials commonly used in

structural components of aircraft and spacecraft. The motivation is mainly weight reduc-

tion and the possibility of tailoring composite laminates for v ery speci�c applications. In

particular, buckling loads of structures can be increased b y the use of composite materi-

als. Moreov er, the buckling loads can be maximized through a proper choice of �ber angles

and/or stacking sequence.

One of the earliest works on buckling load optimization for plates was developed by Chao,

Koh and Sun (1975). They show that the buckling load of a simply supported, angle-ply,

symmetrically laminated rectangular plate under combined normal and shear loads can be

optimized. Because of the restriction to angle-ply laminates, only one �ber angle is taken

as design variable. Hirano (1979) in troducedmore variables to the problem b y considering

a general symmetric laminate with up to six layers but subjected only to axial compression.

Recently , tec hniques related to genetic algorithms (Le Riche and Haftka, 1993) hav e been

used to �nd the best stacking sequence of laminated plates which lead to optimal buckling

loads.



All the aforementioned works have one point in common: the loading con�guration is

considered to be constant and the laminated plate is optimized to withstand only that

particular con�guration. This means that, if the form of the load is changed, the design will

no longer be optimal and in fact the design may be extremely sensitive to such changes in

load, which, in turn, constitutes a potentially hazardous situation.

Cherkaev and Cherkaeva (1998) showed that optimal designs obtained under the condi-

tion of prescribed loads are often sensitive to perturbations in these loads. This fact leads

to dangerous situations where the applied loads are are allowed to vary within certain limits

or, even, are unpredictable. The authors proposed a reformulation of the problem, namely,

a minimax formulation, in order to eliminate the optimal design sensitivity with respect to

loads.

In this work the plates to be optimized are subjected to mechanical loads which are

allowed to vary. A parametrization of the mechanical loads is devised to conveniently repre-

sent the forces acting on the model and take into account its variable nature. The optimal

designs thereby obtained are insensitive to changes in the loading con�guration. Actually,

the optimal designs are those found under the most unfavorable loading condition such that

any other set of admissible loads yields larger eigenvalues (buckling loads).

2. FORMULATION OF THE PROBLEM

The objective function of the problem is the buckling load of composite plates where

�ber orientations and mechanical loads are taken as design variables. The evaluation of the

objective function for a particular design consists of two steps: (1) the prebuckling problem

and (2) the buckling problem. Figure 1 shows the plate with applied mechanical loads and

boundary conditions, assuming that the Reissner-Mindlin theory is adopted. In Fig. 1, � is

the eigenvalue associated with the buckling problem, and Rx, Ry and Rxy are nondimensional

factors.
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Figure 1: Plate subjected to mechanical loads and boundary conditions

The stability theory as developed by Koiter (1945) will be used in the following. Let P

be the total potential energy of a structural system, u0 the displacements in an equilibrium

state and u geometrically admissible displacements satisfying the boundary conditions but

otherwise arbitrary. Thus, the requirement for a stable state of equilibrium is

P [u] = P (u0 + u)� P (u0) = P1[u] + P2[u] + P3[u] + P4[u] + ::: � 0 (1)

where P [u] is the incremental total potential energy and Pm[u] are integrals whose integrands

are homogeneous functions of order m in u and its derivatives. From Eq. (1) it follows that



the necessary conditions for stability of the equilibrium state u0 are P1[u] = 0 and P2[u] � 0.

The relation P1[u] = 0 is equivalent to the principle of virtual work. The critical state is

reached when P2[u] is zero for a buckling mode u1 6= 0 or, when P2[u] becomes positive

semi-de�nite. This can be written mathematically as �P2[u] = 0, where � is the variational

operator applied to u.

Application of the stability condition in elasticity is achieved through a separation of the

strain vector into a linear and a nonlinear part such that � = �L + �N . Additionally, it is

assumed that dead loads are applied to the structure. Thus, the total potential energy is

given by

P (v) =
1

2

Z
V

�
�L(v) + �N(v)

�
�C �

�
�L(v) + �N(v)

�
dV �

Z
�

f � vd� (2)

where V is the plate volume, � the boundary where in-plane mechanical loads are applied

and C the constitutive matrix. Making v = u0 + u the expressions for P1[u] and P2[u] can

be written as

P1[u] =

Z
V

�
�L(u0) + �N (u0)

�
�C �

�
�L(u) + �N

1
(u;u0)

�
dV �

Z
�

f � ud�
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Z
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�L(u0) + �N (u0)

�
�C � �N(u)dV +

1
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Z
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1
(u;u0)

�
�C �

�
�L(u) + �N

1
(u;u0)

�
dV (3)

where �N
1
(u;u0) = �N(u + u0) � �N (u) � �N(u0) is a bilinear and symmetric form in u

and u0. Solution of P1[u] = 0 yields the prebuckling displacements u0 while the solution of

�P2[u] = 0 yields the buckling mode u1. Because the buckling of plates is represented by

a symmetric bifurcation point (Brush and Almroth, 1975), linearization of the prebuckling

problem is possible such that a simpli�ed version of P1[u] = 0 is written as

P1[u] =
Z
V

�L(u0) �C � �L(u)dV �
Z
�

f � ud� = 0 (4)

Under the assumption of linearity, the solution of Eq. (4) is given by u0 = ��u0, where

u0 is a reference state resulting from the force f , f = ��f being the actual force applied to

the structure (all variables associated with the reference state are identi�ed with over-bar).

Introduction of the prebuckling solution u0 = ��u0 into P2[u] from Eq. (3) reveals that

a quadratic term in � arises because of the terms �N
1
(u0;u). However, simpli�cations can

be made in P2[u] if symmetric laminated plates are considered. This is because, for these

plates, the prebuckling rotations and out-of-plane displacements are identically zero when

only in-plane loads are applied. Thus, admitting that the Reissner-Mindlin plate theory is

adopted, w0 =  x0 =  y0 = 0 and the contribution of terms �N
1
(u0;u) are negligible. This

can be clearly seen if von-K�arm�an theory is used since in this case the nonlinear strains

depend solely on w0. If full nonlinear strain-displacement relations are used, u0 and v0 are

still nonzero but their contribution to the eigenproblem is minimal. Therefore, accounting

for the linearity of the prebuckling state and the symmetry of the laminate, P2[u] becomes

P2[u] = ��
Z
V

�L(u0) �C � �N(u)dV +
1

2

Z
V

�L(u) �C � �L(u)dV (5)

3. THE FINITE ELEMENT FORMULATION



The �nite element method was chosen to solve the problems P1[u] = 0 and �P2[u] = 0.

Isoparametric bicubic Lagrangian elements with 16 nodes are used (Heppler and Hansen,

1986). These elements are known to be accurate and to eliminate shear locking e�ects. The

Reissner-Mindlin displacements and rotations can be written in terms of nodal variables and

interpolation functions as:

a = [�]
n
a1 a2 ::: a16

oT
(6)

where a stands for u, v, w,  x or  y. Thus, the element sti�ness matrix [K]e is given by:

[K]e =

Z

e

[B�]
T

2
64
[A] [B] [0]

[B] [D] [0]

[0] [0] [A�]

3
75
e

[B�] d
 (7)

where [B�] are matrices which depend on the interpolation functions and its derivatives and

matrices [A], [B], [D], [A�] are the usual laminate sti�ness matrices (Almeida and Hansen,

1997). Notice that the element sti�ness matrix is used in both the prebuckling and the

buckling problems. The element mechanical load vector, ffge, is

ffge = �
Z
�e

"
[�] [0] [0] [0] [0]

[0] [�] [0] [0] [0]

#T
2�80

(
Rx +Rxy

Ry +Rxy

)
d� (8)

Observe that the reference state, ffge, is obtained by making � = �1 in Eq. (8). The

expression for P2[u], given in Eq. (5), requires the knowledge of the nonlinear strain vector

�N for the Reissner-Mindlin theory. It can be found in the work of Almeida and Hansen

(1997) and other publications and is of the form �N = �N
a
+z�N

b
+z2�N

c
where z is the through

the thickness coordinate. Setting �0 = C � �L(u0) the �rst integral of Eq. (5) is given by

Z
V

�0 �

�
�N
a
+ z�N

b
+ z2�N

c

�
dV =

Z



�
fN0g

T
f�N

a
g+ fM 0g

T
f�N

b
g+ fL0g

T
f�N

c
g

�
d
 (9)

where 
 is the plate middle surface domain, h is the laminate total thickness and (fN 0g;

fM 0g; fL0g) =
R h=2
�h=2

�0(1; z; z
2)dz are the resultant stress moments. Because of laminate

symmetry, �x0, �y0 and �xy0 have a symmetric distribution about z = 0, �xz0 = � yz0 = 0

and, consequently, fM0g is identically zero. Substitution of the expressions for f�N
a
g and

f�N
c
g into Eq. (9) gives the element geometric sti�ness matrix.

[KG]e =

Z

e

[B�G]
T

2
6666664

[@N ] [0] [0] [0] [0]

[0] [@N ] [0] [0] [0]

[0] [0] [@N ] [0] [0]

[0] [0] [0] [@L] [0]

[0] [0] [0] [0] [@L]

3
7777775
[B�G]d
 ; [@F ] =

"
F x0 F xy0

F xy0 F y0

#

(10)

where [B�G] are matrices which depend on [�;x], [�;y]. At this point the matrix equations

for the prebuckling and buckling problems can be written as

[K]fqPg = ffg ; ([K]� �[KG]) fqBg = f0g (11)

where [K] is the global sti�ness matrix, fqPg the prebuckling displacement vector, ffg the

global force vector, [KG] the global geometric sti�ness matrix and fqBg the buckling mode

vector.



4. OPTIMIZATION STRATEGY

Because of the periodicity of the trigonometric functions the �ber angle design variables

are subjected to side constraints �90o � �i � 90o, where �i is the orientation of the ith

layer. The representation of the mechanical loads can be accomplished through the following

parametrization:

Nx = �fx0Rx = �fx0 [Rx0 + (1�Rx0 �Ry0 � Rxy0)�]

Ny = �fy0Ry = �fy0 [Ry0 + (1�Rx0 � Ry0 �Rxy0)�]

Nxy = �fxy0Rxy = �fxy0 [Rxy0 + (1�Rx0 �Ry0 �Rxy0)(1� �� �)] (12)

where � and � are bounded parameters such that 0 � � � 1, 0 � � + � � 1, fx0, fy0, fxy0
are constant force factors and Rx0, Ry0, Rxy0 are invariant load factors included to account

for possible information on the loads available prior to the optimization. If no information

is available regarding the applied loads Rx0 = Ry0 = Rxy0 = 0; however, if for instance it is

known that 50% of the loading capacity is already assigned to the load Rx, 20% to Ry and

10% to Rxy then Rx0 = 0:5, Ry0 = 0:2 and Rxy0 = 0:1. In this case the 20% remaining would

be distributed by the optimization procedure via parameters �, �.

The eigenvalue problem stated in Eq. (11) is solved by the subspace iteration method

along with the Jacobi method to solve the projected problem (Bathe and Wilson, 1976).

The least of the eigenvalues, �1, is the buckling load sought. It is known that optimization

procedures where �ber orientations are considered as design variables often exhibit multiple

optimal or near-optimal designs (Le Riche and Haftka, 1993). The multimodality of such

problems implies that the optimization strategy must be chosen carefully. Classical opti-

mization methods often converge to local optima because they move towards the optimal

design closest to that where the search started, irrespective of whether this optimal design is

the global optimum. In order to avoid these di�culties, probabilistic methods, which sample

the entire design space (any point has a �nite probability of being reached), have been used

in the recent past.

The strategy implemented in this work has the capability of avoiding local optima with

a certain probability, being accurate enough to provide meaningful results, and allowing

the incorporation of the minimax formulation. Hence, the technique adopted consists in a

combination of the attractive properties of the deterministic and probabilistic approaches.

The optimization problem maximizes the buckling load under the most unfavorable loads:

max
�

min
R

�(�;R) = max
�

�(�) ; �(�) = min
R

�(�;R) (13)

where � is the vector of �ber angle design variables, R the vector of load parameters and �

a new objective function. Thus, the minimax problem is reduced to a maximization problem

where the objective function is itself a minimization problem.

5. NUMERICAL SIMULATIONS

The proposed strategy is used to simulate two plates with aspect ratios of a : b = 1 : 1

and a : b = 2 : 1 both with �ve composite plies of equal thickness. All plates simulated have

sides a = 360 mm or a = 720 mm and b = 360 mm, depending on the aspect ratio, laminate

thickness of 0.6 mm and are free of initial imperfections. The assumption of a perfectly at



plate is reasonable because the loss of stability of such structures is not catastrophic since

its bifurcation point is symmetric and the secondary path does not drop downward after

the critical load is reached (Brush and Almroth, 1975). The boundary conditions for the

prebuckling and buckling problems are illustrated in Fig. 1.

As mentioned, two steps are necessary to evaluate the objective function for a particular

design. The step which requires the most intense computational e�ort is by far the buckling

problem calculation (step 2). Thus, every attempt to improve e�ciency of step 2 is worth-

while. Signi�cant improvement without serious loss of accuracy can be achieved as follows:

instead of considering the complete model with u, v, w,  x and  y, assume that u and v make

a negligible contribution to the eigenvalue problem. In this way the eigenvector associated

with the simpli�ed model contains only components related to w,  x and  y. Comparison

between the complete model and the simpli�ed model reveal di�erences of less than 0.3% in

the buckling load.

The material chosen for simulation is graphite/epoxy T300-5208; its properties are avail-

able in the work by Adams, Bowles and Herakovich (1988) and, for a temperature of 21oC,

are: E11 = 154.5 GPa, E22 = 11.13 GPa, �12 = 0.304, G12 = G13 = 6.98 GPa and G23 = 3.36

GPa. The parameters associated with the genetic algorithm (GA) implemented are: pop-

ulation size of 100 individuals, 97% of probability of cross-over and 50% of probability of

mutation. Each design is encoded as a string (chromosome) of genes, each which repre-

senting the �ber orientations and whose alleles range from �90o to +90o. The cross-over

process is implemented by randomly selecting a break point in two parents' chromosomes

and exchanging substrings in order to generate the o�-spring. Then, mutation may occur

with a probability of 50% per chromosome. One gene is randomly chosen in the child's

chromosome and it is assigned an angle within the range of alleles. An elitist strategy is

adopted such that the best �tted individual of a generation is cloned to the next generation.

This strategy provides a useful stopping criterion: the search is assumed to have converged

if the best design remains unchanged for 5 generations. In this work, 2� 2 (square) or 2� 4

(rectangular) �nite element meshes are implemented in all optimization calculations using

the genetic algorithm method. A typical run of the GA takes 5,000 function calculations (�

evaluations).

The genetic algorithm handles the maximization problem while the evaluation of the

reduced objective function � from Eq. (13) is achieved through Powell's method. The �rst

approximation of the optimal design obtained by the GA is re�ned using Powell's method.

This time both the maximization and the minimization problems are solved through Powell's

method. Typically 1,000 objective function evaluations are needed for convergence.

5.1 Square Plate

The plate sides are a = b = 360 mm and the laminate is [�1=�2=�3=�2=�1]. Hence, the

number of �ber angle design variables is three. Eleven load cases are considered. The �rst

three correspond to the traditional optimization under constant loads: Rx0 = 1:0 (case 1),

Ry0 = 1:0 (case 2) and Rxy0 = 1:0 (case 3). For simulation purposes it was admitted that

75% of the loading capacity is constant during the optimization and is distributed between

Rx0, Ry0 and Rxy0 in seven load cases: Rx0 = 0:75 (case 4), Ry0 = 0:75 (case 5), Rxy0 = 0:75

(case 6), Rx0 = Ry0 = 0:375 (case 7), Rx0 = Rxy0 = 0:375 (case 8), Ry0 = Rxy0 = 0:375

(case 9), Rx0 = Ry0 = Rxy0 = 0:25 (case 10). Additionally, the most general case where

no previous information on the loads is available (Rx0 = Ry0 = Rxy0 = 0:0, case 11) is also

simulated in order to o�er some insight into the minimax formulation.



Table 1 presents the results for the optimized square plate. Load cases 1, 2, 3 are obtained

making fx0 = 1:0, fy0 = 1:0, fxy0 = 1:0. The remaining load cases are then obtained making

fx0, fy0, fxy0 equal to the optimal forces previously found for cases 1, 2, 3, respectively.

For the particular square plate under investigation fx0 = fy0 = 407:4 N/m (cases 1 and 2),

fxy0 = 594:1 N/m (case 3). In all simulations a 2�2 �nite element mesh is used to model the

full square plate. Comparison with the 3 � 3 �nite element mesh reveals that the buckling

loads obtained with the 2� 2 mesh have converged. The last column of Table 1 refers to the

number of objective function evaluations needed for convergence.

Table 1 - Optimization for square plate

case �1 �2 �3 Rx Ry Rxy �1 No.

1 -44.7 44.9 46.2 1.000 0.000 0.000 1.000 2080

2 -45.4 45.1 43.4 0.000 1.000 0.000 1.000 1783

3 65.4 9.2 9.2 0.000 0.000 1.000 1.000 991

4 43.3 -48.1 -86.7 0.750 0.000 0.250 0.928 3711

5 46.0 -45.7 85.4 0.000 0.750 0.250 0.927 4054

6 26.5 83.9 82.3 0.250 0.000 0.750 0.928 9429

7 45.7 -42.5 -0.2 0.375 0.375 0.250 0.928 5488

8 39.6 -79.4 89.7 0.625 0.000 0.375 0.881 5992

9 50.7 -9.1 0.6 0.000 0.625 0.375 0.879 6186

10 43.9 -75.3 89.4 0.250 0.250 0.500 0.880 2610

11 44.0 -78.3 87.4 0.000 1.000 0.000 0.832 2213

Observe that the plate is square and the boundary conditions are symmetric about the

diagonal passing through the origin of the reference system of Fig. 1. Thus, provided there

is symmetry in the loading conditions, symmetric designs about the diagonal should be

obtained. This symmetry can be readily veri�ed in the pairs of load cases 4 and 5, and 8 and

9. In these cases, the two designs, 4 and 5 or 8 and 9, yield (nominally) identical buckling

loads and the optimal �ber angles involve (e�ectively) a 90o rotation. In order to simplify

the notation, we introduce �i
1
meaning �1 obtained by the minimax formulation for load case

i.

Through investigation of load case 6, it is possible to verify the existence of two optimal

designs appearing because of the diagonal symmetry. Taking load case 6, it is seen that the

optimal design possesses Rx = 0:25, Ry = 0:0, Rxy = 0:75 and �6
1
= 0:928. The same design

loaded with Rx = 0:0, Ry = 0:25 and Rxy = 0:75 yields �3
1
= 0:932 which is very close to the

original 0:928.

It is interesting to compare load cases 1, 2 and 3 with 4, 5 and 6, respectively. As

expected, �1
1
is greater than �4

1
, �2

1
is greater than �5

1
and �3

1
is greater than �6

1
. However, if

the load ratios are varied, the optimal design obtained under constant loads perform poorer.

For example, if the optimal design obtained for case 3 is loaded with Ry = 1, it gives only

�1 = 0:699 but, if the optimal design obtained for case 11 is loaded with Ry = 1, it gives

�1 = 0:832.

5.2 Rectangular Plate

The laminated plate to be considered has sides a = 360 mm and b = 540 mm and the

laminate is [�1=�2=�3=�2=�1]. For this plate there is no diagonal symmetry such as in the

square plate and therefore no comparison between load cases 3 and 4, and 8 and 9 is possible.

Table 2 presents the results for the optimized nonuniform single-ply plate. Load cases 1, 2,



3 are obtained making fx0 = 1:0, fy0 = 1:0, fxy0 = 1:0. The remaining load cases are then

obtained making fx0, fy0, fxy0 equal to the optimal forces previously found for cases 1, 2,

3, respectively. For the particular rectangular plate under investigation fx0 = 246:0 N/m

(cases 1), fx0 = 431:4:0 N/m (cases 2), fxy0 = 344:2 N/m (case 3). In all simulations a 2� 3

�nite element mesh is used to model the full plate.

Table 2 - Optimization for rectangular plate

case �1 �2 �3 Rx Ry Rxy �1 No.

1 -5.0 24.8 23.7 1.000 0.000 0.000 1.000 3001

2 -48.7 46.7 43.2 0.000 1.000 0.000 1.000 2672

3 66.0 3.1 74.9 0.000 0.000 1.000 1.000 7607

4 -4.6 23.0 23.7 1.000 0.000 0.000 0.999 4694

5 47.3 -35.7 -9.5 0.000 0.750 0.250 0.990 10492

6 59.1 -10.4 71.5 0.000 0.250 0.750 0.957 5753

7 27.5 -33.1 61.5 0.375 0.625 0.000 1.020 7234

8 39.4 -22.5 -9.1 0.375 0.000 0.625 1.030 10066

9 43.0 -35.2 -6.9 0.000 0.375 0.625 0.944 4875

10 42.7 -24.0 -5.6 0.250 0.250 0.500 1.027 8149

11 38.9 -34.2 -5.9 1.000 0.000 0.000 0.871 7123

Similarly to the square plate, comparison between load cases 1 and 4, 2 and 5 or 3 and

6 reveals that �1
1
> �4

1
, �2

1
> �5

1
and �3

1
> �6

1
. Nevertheless, if the loads are varied, the

optimal design obtained under uncertain loading conditions have a superior performance.

For example, if the optimal design obtained for case 2 is loaded with Rx = Ry = Rxy = 1=3

it gives only �1 = 0:829 but if the optimal design obtained for case 11 is loaded with

Rx = Ry = Rxy = 1=3 it gives �1 = 1:037.

A direct comparison between the two optimal design can be visualized in Fig. 2a where

the ratio �11
1
=�2

1
is plotted for various loading con�gurations. The region where design 2

performs better (�11
1
=�2

1
< 1) corresponds to the neighborhood of � = 0, � = 1 (Rx = Rxy =

0, Ry = 1). Away from this region, design 11 becomes better (�11
1
=�2

1
> 1). This behavior

is understandable because the optimal design obtained for case 2 is speci�cally tailored to

withstand the load Rx = Rxy = 0, Ry = 1. Approximately, �11
1
=�2

1
> 1 in 82% of all the

loading situations.

6. COMMENTS

The numerical results obtained con�rm that plates optimized under uncertain loads de-

liver a better overall performance than those optimized under constant loads. The mechanical

load sensitivity of the traditionally optimized plates can be compensated by a reformulation

of the problem to take into account the variable nature of the loads. It is to be noted that

an increase in certainty in the speci�cation of the loading con�guration prior to the opti-

mization process leads to increases in the optimal buckling loads, however, such designs are

inferior for loads other than the design loads.

It is possible to plot the design space related to parameters � and � from Eq. (12) for

the optimal designs obtained and verify that the buckling load found through the minimax

formulation actually corresponds to a minimum with respect to these parameters. In order

to illustrate this, the design space of the mechanical loads for the rectangular plate and load

case 11 is plotted in Fig. 2b. No local minima are present in Fig. 2b and, in accordance with

Table 2, the minimum point is found for � = 1 and � = 0 which corresponds to Ry = Rxy = 0
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Figure 2: Comparative performance and design space of mechanical loads

and Rx = 1. Notice also that the loads Rx = Rxy = 0, Ry = 1, and Rx = Ry = 0, Rxy = 1

also give �1 = 0:871.

A study is conducted to assess the e�ect of the degree of uncertainty on the optimal

designs obtained through the minimax formulations for the square and rectangular plates.

Maintaining Ry0 = Rxy0 = 0:0, �ve situations are considered (Rx0 = 0:0, 0.25, 0.50, 0.75 and

1.00) and the result is shown in Fig. 3.
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Figure 3: E�ect of uncertainty degree on the optimal buckling load

The ideas introduced in this work regarding the minimax formulation applied to uncer-

tain mechanical loads in composite laminated plates can be extended to other composite

structures. Cylindrical shells, which exhibit a catastrophic buckling behavior, could bene�t

from the techniques presented here and are the subject of ongoing work.
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