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Abstract. This paper investigates the influence of scale and material on the damping factor of
structures. In order to evaluate that, two different types of structures were fabricated in labo-
ratory. For these prototypes, reduced scale models were designed and constructed according
to the structural elastic similitude conditions, using different scales and materials. Also, the
number of joints were varied for the two prototypes. It can be observed from the results pre-
sented in this paper that the damping factor depends strongly on the material used whereas
there is no influence due to the scale adopted. However, it should be noticed that all tested
structures have linear behaviour and no attempt was made to control the joints stress level.
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1. INTRODUCTION

Damping in structural systems has been the subject of research for many years – as far
back as 1959, when there was an Annual Meeting of the ASME, in Atlantic City (Ruzicka
(1959)). Although the literature seems to be old, many interesting papers may be found there.

Lazan (1959), for example, defined the various types of damping in his work. There, the
component parts of a system and the damping configuration were analysed considering cer-
tain types of structural damping mechanisms of particular interest. Representative values of
damping for several materials and some points related to their engineering interpretation were
presented. Mentel (1959) showed a study about the vibration energy dissipation on structural
support joints. He concluded that the dissipation of energy on the panel supports could, in
certain cases, exceed the damping inherent to the material by several orders of magnitude.
Marin and Sharma (1959) presented several experimental techniques for the calculation of
damping. He mentioned that the logarithmic decrement is the simplest technique to be used
and, as long as care is taken, it can provide very reliable results.

Structural damping is still not fully understood today and so, more detailed research on
this subject is of primary interest. The objective of the work presented here is to use models
and prototypes tested in laboratory, to verify the influence on the damping factor of the re-
duced modelling of structures based on the similitude theory. For that, two different types of
structures were used: the simplified structure (with the smallest number of joints possible and
well defined boundary conditions) and the framed structure (with a higher number of joints
and also well defined boundary conditions). Care was taken to design a support that was the



closest possible to a perfect clamping, in order to reduce the Coulomb damping inherent to
supports. No control was performed on imposed displacements or tension levels.

This paper is organised as follows: section 2 presents the basis for the similitude theory.
This is followed by the definition of the prototype and models in section 3. After that, the re-
sults for the frequency updating necessary for the model corrections are shown (section 4),
followed by the obtained damping factors for each structure studied (section 5). Finally, some
conclusions are drawn in section 6.

2. SIMILITUDE THEORY

The design of the reduced models was made in accordance with the structural elastic si-
militude theory (Roitman et al, 1989; Duarte, 1990). A brief overview of the process is pre-
sented below. First, it is necessary to find the non-dimensional parameters. Then, the scale
factors can be derived from these.

2.1 Non-dimensional parameters

The physical parameters and the fundamental units involved in a dynamic problem of a
structure vibrating on air are presented in Table 1. There, the physical parameters are: L
(characteristic dimension: for example, length of the structure, geometric dimensions, etc.), E
(Elastic modulus), ρ (specific mass), g (gravitational acceleration), T (period of oscillation), F
(force: for example, weight of the structure, excitation force, etc.) and the fundamental units
are: L (length), M (mass) and T (time), respectively. The rank of the dimensional matrix is r =
3 and the number of physical parameters is n = 6. Therefore, the number of non-dimensional
parameters to be determined are n-r = 3.

Table 1. Parameters for the calculation of the non-dimensional variables

L E ρ g T F
L 1 -1 -3 1 0 1 α1 – α2 – 3α3 + α4 +α6 = 0
M 0 1 1 0 0 1 or α2 + α3 +α6 = 0 (1)
T 0 -2 0 -2 1 -2 –2α2 –2α4 +α5 –2α6  = 0

α1 α2 α3 α4 α5 α6

By making the values of α4, α5, α6 in equation (1), each time one of them equals to unity
and the others zero, it  is possible to find the remaining αi coefficients. These are the powers
of the physical parameters for the determination of the non-dimensional parameters. For ex-
ample, making α4 = 1, α5 = α6 = 0 will result from equation (1) in α1 = 1, α2 = -1 and α3 =1.
Following the same argument, one arrives to the non-dimensional parameters, as given below:

E
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The other non-dimensional parameter is related to the damping factor (ζ) of the structure:

ζπ =4 (3)

When the models are designed respecting the scale factors for the stiffness and mass of
the structure, it has been assumed that equation (3) is satisfied approximately (Roitman et al,
1989).  This may not be true, since the damping factor may be related to the material used to
construct the model. The verification of this hypothesis is the main objective of this paper.



2.2 Scale factors

In order to design the models according to the similitude theory, it is necessary that the
non-dimensional parameters of equations (2) to (3) take the same value for both the models
and the prototypes. So, from π1 (equation (2)):
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(4)

Assuming Kg = 1, equation (4) yields the specific mass scale:
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K =ρ (5)

From π2 (equation (2)) and equation (5), the period (or frequency) scale is obtained:

LT KK =     or    
L

f
K

K
1= (6)

From π3 (equation (2)) and equation (5), one finds the force scale (i.e., weights), conse-
quently, masses (where m is the mass of one element of the structure):

3
LF KKK ρ=     or    3

Lm KKK ρ= (7)

For the flexural stiffness of the structure (EI), assuming that 4
LI KK =  (where I is the

moment of inertia of the cross section), one gets after using equation (5):

5
LEI KKK ρ= (8)

Equation (8) is very difficult to satisfy in practice without correcting the specific mass of
the model – even when using the distorted scale for the thickness of the adopted tube walls
(Kd), i.e., Kd ≠ KL. This is because the thickness of commercial tubes are normally greater than
that calculated through the similitude theory, resulting in a greater moment of inertia than that
calculated using equation (8). It is possible to compensate for the increase of stiffness, by in-
creasing the mass of the element. This can be obtained by using equations (7) and (8):

2
L

m
EI KK = (9)

So, using equations (7) to (9) and the area (A) scale factor ( 2
LA KK = ), the specific mass

scale factor used in the design of the models is finally obtained:
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IE
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KK
K =ρ (10)

3. PROTOTYPE AND MODELS: DEFINITIONS

3.1 Simplified structure

The simplified structure was thought as an structure with the smallest possible number of



joints. Due to the difficulty of fixing just a single bar, a modification to the original design
was necessary so that it became an inverted “T” structure, as shown in Figure 1. Figures 2 and
3 show a detail of the support of this structure for both the prototype and models, respectively.
Its main geometrical and mechanical dimensions are presented in Table 2, where: L (tube
length), φext (external diameter), d (tube thickness) and ρS.T (specific mass calculated using the
similitude theory). The other specific masses will be explained later in the text.

Figure 1 – General view of the simplified
prototype structure

Figures 2 and 3 – Details of the support for
the simplified prototype and model structures

Eight models were designed using different materials (two metals and two plastics) and
geometric scales (1/3, 1/5 and 1/10). The main characteristics of these are also presented in
Table 2 and followed the similitude theory, as presented in the previous section.

For the first four models [aluminium (1/3 and 1/5) and PVC (1/3 and 1/5)], the modelling
was made only for the vertical bar, since the horizontal bar was assumed to have flexural
stiffness infinitely greater than the vertical one. For the horizontal bar, it was only assumed a
diameter approximately double that for the prototype (all with the same length). For the verti-
cal bars, besides respecting the geometric scale, equation (9) was also satisfied through the
correction of the specific mass of each element (equation (10)). The external diameter for the
aluminium models bars were only modelled approximately according to the geometric scale.
For the PVC models it was not possible to reduce the external diameter since there was no
tube with such characteristics.

For the following four models [stainless steel (1/3 and 1/5), PVC (1/10) and ABS (1/10)]
the modelling was made for both vertical and horizontal bars. The specific mass was not cor-
rected for the latter though, since it did not influence the values of the damping factor. The
external diameter scale factor was not followed only for the PVC model for the same reason
already mentioned.

The specific mass calculated through the similitude theory was completely followed in
the majority of the models by correcting the difference between the theoretical ρ and the



weighed ρ. This was achieved by altering the necessary additional mass (distributed along the
vertical bar). For the ABS model, the weighed value was greater than that from the similitude
theory. That would result in a decrease on the model weight, achieved either by decreasing the
cross section of the vertical bars or by making holes along its length. As the difference was
not considered high and the two methods would decrease the flexural stiffness of the bars,
nothing was done in that respect. The welding (gluing for the ABS model) of the horizontal
and vertical bars was carefully performed to prevent micro cracks which could influence the
damping results obtained.

Table 2. Physical and mechanical characteristics of prototype (PT) and models used

Simplified Structure Framed Structure
Ma-
terial

Mech.
Prop.

Bar L φext d ρS.T ρfinal Bar φext d ρS.T ρreached ρfinal

PT Steel E = 210
ρ= 7,86

Vert.
Horiz.

486,5
78

101,6
200

6,35
20

Legs
Horiz.

33,4
21,34

4,55
2,77

10,34
7,86

A E = 69
ρ= 2,71

Vert.
Horiz.

1621,7
274

31,75
88,9

3,175
2,38

6,33
x

4,97
x

Legs
Horiz.

12,7
9,53

1,58
1,59

10,31
17,06

14,55
2,71

16,45
x

1/3 SS E = 210
ρ= 7,97

Vert.
Horiz.

1621,7
273

32
63,5

1,25
1,5

22,06
x

13,30
x

Legs
Horiz.

12,7
7,94

1,0
0,7

34,3
41,9

40,4
7,97

23,27
x

PVC E = 3
ρ= 1,46

Vert.
Horiz.

1621,7
274

75
110

5,75
5,0

1,61
x

1,18
x

Legs
Horiz.

32
20

3,3
1,5

2,97
3,9

3,2
1,46

4,26
x

A E = 69
ρ= 2,71

Vert.
Horiz.

973
274

15,87
31,75

2,0
3,175

6,96
x

4,53
x

1/5 SS E = 210
ρ= 7,97

Vert.
Horiz.

973
153

19,05
38,1

1,0
1,5

35,23
x

34,23
x

PVC E = 3
ρ= 1,46

Vert.
Horiz.

973
274

40
75

4,125
5,75

2,01
x

1,23
x

ABS
*

E = 3
ρ= 1,05

Vert.
Horiz.

486,5
63

11,1
25,4

1,6
1,6

1,14
x

1,18
x

Legs
Horiz.

25,4
11,1

1,6
1,6

2,02
1,05

2,01
1,05

1,13
x

1/10 PVC E = 3
ρ= 1,46

Vert.
Horiz.

486,5
63

20
25

3,65
2,975

3,46
x

3,56
x

Notes: A = aluminium; SS = Stainless Steel. Units: E [GPa], ρ [g/cm3], L [mm], φ [mm], d [mm]
* For the ABS framed structure, the geometric scale was 1/3.

3.2 Framed structure

In order to verify the influence of joints on the damping factor, a spatial framed prototype
structure was devised, clamped on the base and free on the top. It has a rectangular cross sec-
tion to prevent coupling of natural frequencies in the two main directions. It was made of
continuous tubes for the legs and horizontal bars, equally spaced, as shown in Figure 4. The
results were obtained for the direction of smaller stiffness (y axes, Figure 4).

For the reduced models, only the 1/3 geometric scale was assumed this time, as the scale
showed to have no importance on the damping factor, as will be seen in the following sec-
tions. However, when calculating the ABS model according to the similitude theory, there
was no material available to respect this 1/3 scale. That fact forced the addition of mass on the
horizontal bars of the prototype (as the ρS.T for the ABS structure was smaller than the theoreti-
cal value).  Then, the new specific masses of the prototype were assumed to be 10,34 g/cm3

for the horizontal bars and 7,86 g/cm3 for the legs. These values were used to recalculate the
models, as shown in Table 2 (ρreached). Nevertheless, when weighing the prototype, it was
much heavier than previously calculated using the theoretical values (probably due to imper-



fections on the diameter) and so, it was not necessary to add any additional mass.
Figure 5 shows the framed model structures with details of their supports. The supports

were designed in order to guarantee the design clamped condition. As for the previous struc-
ture, special care was taken with the welding (gluing) of the horizontal bars to the legs to pre-
vent micro cracks that could spoil the results.
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Figure 4 – Sketch of the framed prototype
structure

Figure 5 – Framed models after frequency up-
dating (with a view of the supports)

The geometric scale for the models was respected, as well as the scale given by equation
(9). The latter was achieved by correcting the specific mass of the models (equation (10)). The
scales for areas and external diameters were followed whenever possible. Again, it was neces-
sary to use distorted scale for the thickness of the tube walls in most models, for the same
reasons mentioned for the simplified structure. The characteristics of the models are also pre-
sented in Table 2, where the ρreached column is the reached specific mass obtained after the ad-
dition of mass on the horizontal bars.

4. FREQUENCY CORRECTION

It was necessary, after constructing the models, to correct their experimental natural fre-
quencies so that they would match the values obtained for the prototype when using the si-
militude theory (Kf, equation (6)). These natural frequencies were obtained from free vibration
tests. Only one accelerometer was used for the simplified structures, whereas the framed ones
used two accelerometers (in opposite directions, as shown in Figure 4). The latter was neces-
sary so that it would be possible to distinguish between flexural and torsional modes.

4.1 Simplified structure

Initially, the theoretical and experimental natural frequencies were compared. The theo-
retical values were calculated using clamped-free cantilever beam formulas (Clough and Pen-
zien, 1975). The results are shown in Table 3 and validate the hypothesis of a clamped-free
system. The differences found for the prototype can be explained by the differences between
the real and theoretical mechanical and geometrical characteristics used. As the main objec-
tive of the study was to correlate the experimental natural frequencies of the prototype and
models, no effort was made to better correlate the theoretical and experimental values given
for the prototype.

The correction for the natural frequencies of the models was made by taking into account



the frequency scale, as given by equation (6). The objective was to get an experimental natu-
ral frequency which was the closest possible to that calculated using this equation. This was
achieved through the modification of the additional mass for each model, which changed the
final specific mass of the models (ρfinal), as seen in Table 2. Comparison of ρfinal and ρS.T. col-
umns shows that the former is smaller for the great majority of the models. This fact can be
explained by the variations between the theoretical and real values of the geometric and me-
chanical characteristics, as happened for the prototype. Another explanation can be the diffi-
culty in modelling at the same time the flexural and axial stiffness (here, only the former was
considered). Comparing the values of the natural frequencies of the models calculated from
the experimental frequency of the prototype (fS.T. and fexp.) as shown in Table 3, it can be con-
cluded that the models are in accordance with the physical similitude condition. The only
structure in which this was not true was for the ABS model (as it required mass to be taken
from the structure and this was not done). The theoretical values presented in Table 3 were
calculated considering the final specific mass of each model, as given in Table 2. An attempt
was made to correct the elastic modulus used for the models, which gave a better theoreti-
cal/experimental correlation. For the ABS model, only the first natural frequency had a good
correlation, as the other frequencies were influenced by the mass of the accelerometer (also a
problem for the PVC model – 1/5 scale). Comparing the theoretical and experimental values
given in Table 3, it can be concluded that they correlated satisfactorily.

Table 3. First three natural frequencies (Hz) of the simplified structure (theoretical –T, si-
militude theory – S.T. and experimental – exp.) – Prototype and Models

f1 f2 f3

Scale Material fT fS.T fexp. fT fS.T fexp. fT fS.T fexp.

Ptype Stell 4,08 x 4,8±0,8 25,6 x 27,2±0,8 71,69 x 66,4±0,8
Aluminium 7,3 8,3±0,1 7,2±0,4 45,7 47,1±0,1 45,2±0,4 127,9 115,0±0,1 129±1

1/3 Stainless Steel 8,1 8,3±0,1 7±1 51,1 47,1±0,1 46±1 143,0 115,0±0,1 136±1
PVC 7,4 8,3±0,1 7,2±0,4 46,3 47,1±0,1 44,8±0,4 129,6 115,0±0,1 129±1

Aluminium 10,1 10,7±0,2 9,6±0,4 63,4 60,8±0,2 55,6±0,4 177,7 148,5±0,2 158±1
1/5 Stainless Steel 9,3 10,7±0,2 8±1 58,1 60,8±0,2 55±1 162,6 148,5±0,2 157±1

PVC 10,4 10,7±0,2 8,8±0,8 65,4 60,8±0,2 56±0,8 183,2 148,5±0,2 148±1
ABS 11,4 15,2±0,3 11±1 71,3 86,0±0,3 54±1 199,6 210,0±0,3 166±1

1/10 PVC 13,4 15,2±0,3 14±1 83,7 86,0±0,3 88±1 234,3 210,0±0,3 220±1

4.2 Framed structure

The same steps mentioned for the simplified structure were used here. The theoretical
determination of the natural frequencies was performed this time through the use of two pro-
grams based on Finite Element Method: SAFE (Torres, 1988) and OMEGA (Torres, 1988).
For the experimental values, when analysing the frequency spectrum of each accelerometer
and the relative phase plot between them, it is possible to see if the modes are bending or tor-
sional modes (if the relative phase for the frequencies are close to 00 or 1800, respectively).

Table 4 shows the values for the first three bending (B) and torsional (T) natural frequen-
cies of the framed structure. There, analysing the results for the prototype structure, it can be
seen that only the lower modes present good correlated (the higher modes were probably af-
fected by the precision of the numerical calculation). As the main interest was the lower
modes (for which the natural frequencies were corrected), no attempt was made to better cor-
relate the higher ones.

It was also necessary to correct the natural frequencies of the framed structure models, so
to follow the frequency scale factor (equation (6)). The same procedure used for the simpli-



fied structure was employed here. The final specific mass for the legs (since the additional
mass was distributed only for those elements) is given in Table 2. For the horizontal bars, the
theoretical values were used. The discrepancies found between the final (ρfinal) and reached
(ρreached) specific masses can be explained in the same way as for the simplified structures.
Comparing now the frequency values from the similitude theory and experimental tests it can
be seen a good correlation between them. As a final comparison, the theoretical frequencies
found using the final specific mass (fT for the models) are compared with the experimental
ones. There was also an attempt to adjust the elastic modulus (E) for a better theoreti-
cal/experimental correlation and the results presented in Table 4 already take that into ac-
count. However, the stainless steel and PVC models did not need this adjustment. Again, the
lower modes were better predicted than the higher ones and the same comments made previ-
ously apply here.

Table 4. First three natural frequencies (Hz) of the framed structure (theoretical –T, similitude
theory – S.T. and experimental – exp.) – Prototype and Models

Prototype Models
Mode A SS ABS PVC

f Type fT fexp. fS.T. fT. fexp. fT. fexp. fT. fexp. fT. fexp.

1st B 9,12 9,12±0,08 15,8±0,1 16,92 15,2±0,8 17,66 15,2±0,8 16,44 13,6±0,8 14,34 15,2±0,8
T 15,08 17,6±0,4 30,7±0,7 24,37 23,2±0,8 32,8 28,0±0,8 33,27 31,2±0,8 24,05 28,8±0,8

2nd B 30,12 32,0±0,4 55,4±0,7 52,28 52,0±0,8 58,22 54,4±0,8 60,5 59,2±0,8 50,11 59,2±0,8
T 42,19 51,2±0,8 88,7±1,4 68,98 72,8±0,8 88,72 80,8±0,8 87,99 87,2±0,8 68,65 88,0±0,8

3rd B 53,32 67,2±0,8 116,4±1,4 83,75 108±2 102,1 122±2 119,2 142±2 94,56 128±2
T 62,82 86,4±0,8 149,6±1,4 99,54 134±2 126,3 146±2 122,8 166±2 106,1 158±2

5. DAMPING FACTORS

In order to find the damping factors for the tested structures, two types of testes were per-
formed: free and forced vibration tests. When using the former, only the damping factor asso-
ciated to the first flexural mode of the structure can be calculated through the use of the loga-
rithmic decrement technique (Clough and Penzien, 1975). When using the latter, all damping
factors of the structure can be calculated through the use of modal analysis techniques (Ewins,
1984). Among the several available techniques, the circle-fit was chosen to be used here.

5.1 Logarithmic decrement results

The logarithmic decrement method was used to calculate the damping factors for the first
flexural mode of the structures. However, although using a lower band pass filter (which cuts
frequencies immediately above the first natural frequency), some time signals were still cou-
pled. So, it was necessary to adjust the envelop of the signal prior to the use of the technique.
A least square fit technique was used for that purpose. Figure 6 shows such an example for
the framed stainless steel 1/3 model, with the least squares fit presented in Figure 7.

The damping factors were obtained from at least three time signals to average the imper-
fections inherent in the experimental data. The values are presented in Table 5, ζ (%). It can
be observed from the results that the damping factors are very distinct for the metal and plas-
tic structures. It has got not so much variation related to the scale factor. The damping factors
obtained for the same material but for different structures showed a tendency to an increase in
value with the increase of the number of joints. However, other studies not presented here
(Duarte, 1990) with a much higher number of joints, showed that was not the real case. The
quality of the fit (r) was monitored for all structures to guarantee the confidence in the results.
They were found to be very close to the ideal value of 1,00, as can be seen in Table 5.



Figure 6 – Acceleration time signal for the
framed stainless steel model (1/3 scale)

Figure 7 – Least square fit of the time signal
shown in Figure 6.

Table 5.  Damping values (ζ [%]) and correlation coefficients (r) from logarithmic decrement
and damping values for the first three modes from circle-fit techniques

Logarithmic decrement Circle-fit
Structure ⇒ Simplified Framed Simplified
Material ⇓ ζ1 r ζ1 r ζ1 ζ2 ζ3

Ptype Steel 0,12 0,995 0,12 0,988 x 0.07±0.03 0.10±0.02
Aluminium 0,06 0,986 0,18 0,971 x 0.07±0.01 0.10±0.01

1/3 Stainless S. 0,06 0,997 0,24 0,998 x 0.11±0.01 0.18±.003
PVC 0,88 0,999 1,83 0,997 0.88±0.01 1.28±0.02 1.60±0.01

Aluminium 0,15 0,989 x 0.22±0.03 0.18±.004
1/5 Stainless S. 0,11 0,990 0.15±0.04 0.06±0.01 0.14±.004

PVC 1,16 0,998 1.44±0.22 1.62±0.02 2.08±0.01
ABS* 1,32 0,999 1,32 0,999 1.14±0.14 0.82±0.02 1.91±0.09

1/10 PVC 1,11 0,998 1.16±0.14 1.99±0.04 2.33±0.11
* For the ABS framed structure, the geometric scale was 1/3.
x It was not possible to perform the test due to the coupling between the transverse frequencies.

5.2 Modal Analysis results

The results obtained from the circle-fit technique for the simplified structure are also pre-
sented in Table 5. Comparing the first mode values from this technique with the ones obtained
from the logarithmic decrement, it can be seen that the correlation was quite good. So, for the
structures where it was not possible to obtain the values through forced vibration, one can
consider the value obtained from the free vibration .

Analysing the results as the mode number increases, it can be seen that, for the majority
of the structures, the damping factor also increases. Only for the ABS 1/10 model and the
stainless steel 1/5 model the above observation was not true. In order to conclude something
in that respect it would be necessary to have more modes and this was not the case here.
Again, the damping factors for metals and plastics were quite different. The results obtained
from the circle-fit analysis for the framed structure followed the same conclusions already
made for the simplified structure (although they are not shown here).

Table 6 presents a summary of the results obtained for each of the structures studied.
Analysing the results, it can be seen that the damping factor does not vary significantly with
the mode analysed. Moreover, for the same materials the damping values are quite close,
whereas for different materials they vary significantly. Also, it can be seen that the scale has



not much influence in such parameter.

Table 6.  Summary of damping values found for the studied structures

Simplified Structures Framed Structures
Metals Plastics Metals Plastics

Ptype Models Ptype ModelsFlexural
Mode Steel Aluminium Stainless S. ABS PVC Steel Alumin-

ium
Stainless

S.
ABS PVC

1st 0.12 0.06→0.15 0.06→0.15 1.14 0.88→1.44 0.16 0.18 0.24 1.5 1.13
2nd 0.07 0.07→0.22 0.06→0.11 0.82 1.28→1.99 0.10 0.17 0.19 0.95 1.63
3rd 0.10 0.10→0.18 0.14→0.18 1.91 1.6→2.33 0.45 0.22 0.16 0.71 1.68

Variation 0.06→0.22 0.82→2.33 0.07→0.45 0.71→1.68

6. CONCLUSIONS

It can be concluded from the results presented here that, for structures or models with lin-
ear behaviour, the damping factor depends strongly on the material of which they are made.
The geometric scale has no influence on such parameter and so, it does not depend on the
relation stiffness/mass. Moreover, only the variation of the distributed mass on the structure
does not alter the damping factor. It was also verified that an increase on the number of joints
of the structure does not affect significantly the values of the damping factors (they still de-
pend strongly on the material used). However, further study is necessary in order to control
the imposed displacements and stress levels applied to the structure so as to make the conclu-
sions here more general.
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