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Abstract. Transient turbulent forced convection of Newtonian fluids within parallel-plates
channels subjected to third kind boundary conditions and periodic variation of inlet
temperature is considered. The well-established Cebeci-Smith’s  turbulence model is used in
conjunction with  turbulent Prandtl number models, valid for a wide molecular Prandtl
number range for the closure of the forced convection formulation. A hybrid approach is
employed to handle a class of parabolic-hyperbolic problem, that appears in connection with
transient forced convection in channels. A integral transformation process eliminates the
independent variables in which the diffusion phenomena occurs, while the resulting system of
coupled hyperbolic equations is solved by a second-order explicit finite-difference scheme.
Results are presented for average fluid temperature and wall heat flux over a wide range of
the dimensionless axial coordinate.
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1. INTRODUCTION

Studies on transient forced convection in channel flow define a very broad field in heat
transfer research. Several procedures available in the literature have been developed in order
to represent important characteristics of the heat flow. However, they are concentrated mainly
on laminar fluid flow situations (Cotta et al., 1986, Sucec and Radley,1990, Yan, 1993,
Guedes and Ozisik, 1994).

Some early attempts to solve unsteady turbulent heat transfer in channels with
periodically varying inlet temperature focused the solution only on the periodic thermal
response of the system, after the initial transients have disappeared (Cotta, Kim and Ozisik,
1989; Guedes et al., 1994). The integral transform technique was employed to transform the
original problem in a system of coupled ordinary differential equations in the complex domain



due to the periodic regime, which could then be readily solved analytically. Cotta and Gerk
(1994) developed a mixed finite-difference and integral transform approach used to solve
parabolic-hyperbolic partial differential equations that appear in transient laminar forced
convection. The procedure consists of handling the original partial differential equation by
using the integral transform technique to eliminate the independent variables in which the
diffusion phenomena predominates. Then, the transformed coupled hyperbolic equations
system is solved numerically through a modified upwind second-order finite difference
scheme.

In the present study, a hybrid solution is developed for transient turbulent forced
convection through a parallel-plates channel with time varying inlet temperature and third
kind boundary conditions. The well-established Cebeci-Smith’s turbulence model is used in
conjunction with a turbulent Prandtl number model in formulating the forced convection
equations. The goal is to extend the study undertaken by Guedes et al. (1994), developed for
periodic turbulent forced convection, following the fully transient analysis of Guedes and
Ozisik (1994) for the laminar flow situation.

2. ANALYSIS

Consider unsteady turbulent forced convection of a incompressible, fully developed
Newtonian flow in the thermal entrance region of a parallel-plates channel subjected to third
kind boundary conditions and periodic time variation of the inlet temperature. The
mathematical formulation of the problem in dimensionless form is similar to one presented by
Guedes and Ozisik (1994), including the turbulent thermal diffusivity, hε :
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0)0,( θθ =ZY, (1.2)

( )ττθ Ω= sin),0,(Y (1.3)

Y
 
∂
θ∂

 = 0                   0=Y (1.4)

+θBi
Y

 
∂
∂θ

 = 0,        1=Y (1.5)

The turbulent thermal diffusivity is defined as

ν
ε

ε
t

fd
h Pr

Pr
= (2)

where εfd is the turbulent viscosity and Prt  is the turbulent Prandtl number.

The turbulent thermal diffusivity is represented by using  the well-established Cebeci-
Smith’s turbulence model in conjunction with a turbulent Prandtl number model (Pimentel et



al., 1996) in order to close the turbulent forced convection equations. The velocity field is
obtained as described in Pimentel et al. ( 1999).

The first step in the solution of this problem, as proposed by Cotta and Gerk (1994 ) for
laminar flow, is to apply the integral transform technique (GITT) on Eq. (1.1) to eliminate the
independent variables in which the diffusion phenomena occurs. Then the resulting system of
coupled hyperbolic equations is solved by a second-order explicit finite-difference scheme.

3. INTEGRAL TRANSFORM TECHNIQUE

The basic steps in applying the integral transform technique to the solution of the system
(1.1 – 1.5) are presented in Cotta (1993).

The following auxiliary problem is chosen, which is a special case of the classical Sturm-
Liouville system:
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The sign-count method (Cotta, 1993) is used to solve the eigenvalue problem above and
determine as many eigenvalues and eigenfuctions as needed for convergence of  the integral
transform solution (Cotta, 1993).

By utilizing the eigenfunction orthogonality property, we define the following integral
transform pair:
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We now operate on Eq. (1.1) with the operator dYi∫ Γ
1

0
 to obtain the following infinite

hyperbolic partial differential system:
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and the transformed inicial and inlet conditions are given respectively by:
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The resulting system of coupled hyperbolic equations, Eqs.(6.1 – 6.3) is solved by a
second-order explicit finite-difference scheme based on a modification to the upwind method
for the classical wave equation. This method was developed by Beam and Warming (1976).
The proposed scheme involving a predictor-corrector procedure is given by:
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with

Z∆
∆= τλ (7.3)

where the subscripts i and k represent terms in the eigenfunction expansion, j is related to the
space coordinate discretization and n to the time step advanced. ∆τ is the time step, ∆Z the
spatial mesh size in the finite difference scheme and N is the truncation order of the
eigenfunction expansion. The present scheme is second order accurate in both the time and
space variables, as demonstrated by Cotta and Gerk.(1994).

The stability of this scheme is given through the Courant number (γ), according to the
restriction
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4. RESULTS AND DISCUSSION

The numerical results obtained through the strategy analyzed in the previous section are
discussed below. The computational code was written in Fortran 77 and implemented in a
Pentium 166 MHz microcomputer. All the cases were evaluated with 00 =θ  and first type

boundary condition. In the comparison with previous laminar flow results a step change at the
inlet temperature was used, while in the turbulent flow situation a sinusoidal time variation of
the inlet temperature was considered. It should be noted that the following Z dimensionless
coordinate makes the results, in terms of Z, independent of Reynolds number for the laminar
situation, while for the turbulent flow case, a typical value for the Reynolds number
(Re=1.0E+05) was adopted.

Figure 1 shows the average temperature plotted as a function of the axial coordinate Z, at
different times τ, for the laminar flow case with a step change at the inlet temperature.
Comparison with the numerical results presented by Cotta et al. (1986) clearly confirms the
validity of the present code.
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Figure 1 – Bulk temperature distribution in laminar flow for a step change in inlet
temperature. Comparison with purely numerical solution in Cotta et al. (1986).



Similarly, Fig. 2 shows the comparison between the local Nusselt number calculated from
a second-order accurate numerical solution (Cotta et al., 1986) and the results obtained with
the present hybrid approach. Again, a perfect validation of the proposed hybrid scheme and
computer code is achieved.
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Figure 2 – Nusselt number distribution in laminar flow for a step change in inlet temperature.
Comparison with purely numerical solution in Cotta et al. (1986).

Table 1 presents the convergence behaviour of dimensionless bulk temperature and wall
heat flux at several axial coordinate and time values for transient turbulent forced convection
and sinusoidal time variation of inlet temperature.

One can notice that the eigenfunction expansion is already fully converged to four
significant digits for truncation order N ≅  15, within the range of independent variables
considered, for both quantities of practical interest.

The axial coordinate and time increments were also carefully varied and analyzed, to
ensure the four significant digits reported, with ∆Z as low as 5E-04 and ∆τ as low as 1E-05.



Table 1 – Convergence of dimensionless bulk temperature and wall heat flux for transient
turbulent forced convection and sinusoidal variation of inlet temperature with Ω = 0.5.

N Z = 0.005 Z = 0.01 Z = 0.02 Z = 0.05
θbulk Heat Flux θbulk Heat Flux θbulk Heat Flux θbulk Heat Flux

τ = 0.50

5 0.2228 -11.18 0.2040 -9.787 0.1710 -8.082 0.1007 -4.756
10 0.2229 -11.19 0.2041 -9.777 0.1711 -8.092 0.1008 -4.762
12 0.2229 -11.18 0.2041 -9.777 0.1711 -8.091 0.1008 -4.762
15 0.2229 -11.18 0.2041 -9.776 0.1711 -8.090 0.1008 -4.761
17 0.2229 -11.18 0.2041 -9.776 0.1711 -8.090 0.1008 -4.761

τ = 1.00

5 0.4320 -21.69 0.3959 -18.96 0.3324 -15.71 0.1968 -9.295
10 0.4323 -21.70 0.3961 -18.98 0.3326 -15.73 0.1969 -9.306
12 0.4323 -21.69 0.3961 -18.98 0.3326 -15.73 0.1969 -9.306
15 0.4323 -21.69 0.3961 -18.98 0.3326 -15.73 0.1969 -9.304
17 0.4323 -21.69 0.3961 -18.98 0.3326 -15.73 0.1969 -9.304

τ = 2.00

5 0.7586 -38.08 0.6954 -33.31 0.5845 -27.63 0.3469 -16.39
10 0.7591 -38.10 0.6959 -33.35 0.5849 -27.67 0.3472 -16.41
12 0.7591 -38.10 0.6958 -33.34 0.5848 -27.67 0.3471 -16.41
15 0.7590 -38.10 0.6958 -33.34 0.5848 -27.66 0.3471 -16.41
17 0.7590 -38.10 0.6958 -33.34 0.5848 -27.66 0.3471 -16.41

τ = 5.00

5 0.5399 -27.11 0.4953 -23.73 0.4170 -19.72 0.2487 -11.75
10 0.5402 -27.12 0.4956 -23.76 0.4172 -19.74 0.2488 -11.76
12 0.5402 -27.12 0.4956 -23.76 0.4172 -19.74 0.2488 -11.76
15 0.5402 -27.12 0.4956 -23.75 0.4172 -19.74 0.2488 -11.76
17 0.5402 -27.12 0.4956 -23.75 0.4172 -19.74 0.2488 -11.76

τ = 7.50

5 -0.5151 25.86 -0.4721 22.61 -0.3965 18.75 -0.2349 11.10
10 -0.5155 25.87 -0.4724 22.64 -0.3968 18.76 -0.2351 11.11
12 -0.5154 25.87 -0.4724 22.63 -0.3968 18.77 -0.2351 11.11
15 -0.5154 25.87 -0.4723 22.63 -0.3967 18.77 -0.2351 11.11
17 -0.5154 25.87 -0.4723 22.63 -0.3967 18.77 -0.2351 11.11

The behaviour of the dimensionless bulk temperature at different axial positions can be
viewed through Figs. 3a and 3b for two different inlet temperature oscillation frequencies.
The results were obtained for turbulent flow with sinusoidal oscillation of the inlet
temperature and first kind wall boundary conditions. The wall heat flux results are also
represented in Figs. 4a and 4b. The expected physical behaviour, where the amplitudes
decrease with increasing distance from the inlet is observed for both quantities. Besides, the



comparison of the results in Figs. 3 and 4 indicates that the maximum heat flux occurs at
minimum average temperature position and vice-versa.
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Figure 3a – Variation of the dimensionless bulk temperature as
a function of time for Ω = 0.5.
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Figure 3b – Variation of the dimensionless bulk temperature as
a function of time for Ω = 1.0

Comparing the behaviour of both sets of curves for the two different frequencies, it can
be concluded that the periodic regime has been already attained within the time range
considered. Then, the amplitudes decay is essentially the same for each axial position, while
the phase lag with respect to the inlet temperature oscillation increases as the frequency is
made larger.
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Figure 4a – Variation of the wall heat flux as a function of time for Ω = 0.5.
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Figure 4b – Variation of the wall heat flux as a function of time for Ω = 1.0.

5. CONCLUSIONS

A hybrid integral transform/finite difference approach was advanced to accurately handle
transient turbulent forced convection in channels. The diffusion operator is eliminated from
the original partial differential equation through integral transformation, while the resulting
hyperbolic system is numerically handled through an explicit second-order accurate modified



upwind scheme. This strategy allows for a more reliable stability control of the numerical
solution process, avoiding the necessity for a domain discretization in the normal direction,
also improving the overall accuracy of the computation.

The procedure is first validated against the laminar flow situation and the code is
employed to study more closely transient turbulent forced convection due to a sinusoidal time
variation of the fluid inlet temperature, when the expected physical trends are observed.

Future work shall include the extension of the analysis and code to deal with rough
channel walls and thermal capacitance effects at the duct walls.

REFERENCES

Cotta, R. M., Ozisik, M. N. and McRae, D. S., 1986, Transient heat transfer in channel flow
with step change in inlet temperature, Numerical Heat Transfer, v. 9, pp. 619-630.

Cotta, R. M., 1993, Integral transforms in computational heat and fluid flow, CRC Press Inc.,
2000 Corporate Blvd., Boca Raton, Florida.

Cotta, R. M. and Gerk, J. E. V., 1994, Mixed finite-difference integral transform approach for
parabolic-hyperbolic problems in transient forced convection, Numerical Heat Transfer
part B - Fundamentals, v. 25, n. 4, pp. 433-448.

Guedes, R. O. C., Ozisik, M.N., Cotta, R.M.,1994, Conjugated periodic turbulent forced
convection in a parallel plate channel, Journal of Heat Transfer, v. 116, pp. 40-46.

Guedes, R. O. C. and Ozisik, M. N., 1994, Hybrid approach for solving unsteady laminar
forced convection inside ducts with periodically varying inlet temperature, International
Journal of Heat and Fluid Flow, v. 15, n. 2, pp. 116-121.

Ozisik, M. N., Cotta, R. M. and Kim, W. S., 1989, Heat-transfer in turbulent forced-
convection between parallel plates, Canadian Journal of Chemical Engineering, v. 67, n.
5, pp. 771-776.

Pimentel, L. C. G., Nogueira, E., Cotta, R. M. & Kakaç S., Análise comparativa de modelos
para o número de Prnadtl turbulento em convecção forçada interna, VI Congresso
Brasileiro de Engenharia e Ciências Térmicas – ENCIT/1996, VI Congresso
Latinoamericano de Trasferência Calor y Materia, LATCYM/1996, UFSC, Santa
Catarina, Brazil.

Pimentel, L. C. G., Cotta, R. M. and Kakaç, S., 1999, Fully developed turbulent flow in ducts
with symmetric and asymmetric rough walls, Chemical Engineering Journal, in press.

Sucec, J. and Radley, D., 1990, Unsteady forced convection heat transfer in a channel,
International Journal of Heat and Mass Transfer, v. 33, n. 4, pp. 683-690.

Warming, R. F. and Beam, R. M., 1976, Upwind second-order difference schemes and
applications in aerodynamic flows, AIAA Journal, vol. 14, n. 9,  pp. 1241-1249.

Yan, M., 1993, Transient conjugated heat transfer in channel flows with convection from the
ambient, International Journal of Heat and Mass Transfer, v. 36, n. 5, pp. 1295-1301.


