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Abstract. An efficient and accurate finite element procedure, based on the Galerkin weighted
residual method and a novel family of high-order shape functions, is devised to model high speed
thin film gas flows. The novel procedure performs as efficiently as upwind finite element methods
developed for high speed gas bearings without introducing numerical diffusion into the solution.
The computational efficiency and accuracy of the novel high-order finite element procedure are
evaluated for plane slider and Rayleigh step gas bearings.
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1. INTRODUCTION

Gas bearings are largely used in machinery applications that require low friction or an oil
free environment, such as in high-precision instruments, computer magnetic storage devices,
gyroscopes, microbearings, and many others. Advances in gas bearing technology have been
accompanied by the development of accurate numerical tools to predict the bearing static and
dynamic behavior under stringent operating conditions.

The finite element method (FEM) has been widely used in both thin and ultra-thin gas film
lubrication problems due to its flexibility to represent complex bearing geometries and associated
boundary conditions. Thin gas film flows are described by the classical Reynolds equation for
compressible fluids. Some problems of interest are grooved gas bearings and seals used in
auxiliary turbomachinery. Reddi & Chu (1970) are pioneers in the application of the FEM in thin
gas film lubrication. They developed a FEM incremental scheme based on the Galerkin weighted
residual method to analyze plane slider and grooved gas bearings. Hernandez & Boudet (1995)
and Zirkelback & San Andrés (1998) also carried out analyses of grooved gas bearings by using
FEM schemes based on the Galerkin method.



In ultra-thin gas film lubrication, the gas flow is described by the modified Reynolds
equation, which accounts for the molecular gas rarefaction effects. Computer flying heads and
microbearings are some problems of interest. Mitsuya & Ohkubo (1987), Kubo et al. (1988), and
Peng & Hardie (1995) performed FEM analyses of computer flying heads by using the Galerkin
method. Most of the recent advances in gas bearing technology have been driven by the
computer industry (Pan, 1990).

Higher efficiency and productivity demand increased operating speeds for gas bearings. The
Reynolds equation for compressible fluids is a convective-diffusion transport equation. At high
speeds, the Couette flow terms (advection transport terms) dominate the gas flow. Procedures
based either on central finite difference schemes or on the Galerkin weighted residual method
usually exhibit numerical oscillations in the solution of gas lubrication problems, where
convective flow terms are important. In order to render numerically stable solutions for the
Reynolds equation at high speeds, upwind schemes and adaptive methods have been used to
build efficient FEM procedures for gas bearings.

FEM upwind schemes are generally based on the Petrov-Galerkin weighted residual
method. These schemes have been implemented using either non-symmetrical weighting
functions (Heinrich et al., 1977) or special numerical integration of the advection terms (Hughes,
1978). Garcia-Suarez et al. (1984) presented one of the first FEM analyses of gas slider bearings
for computer magnetic storage devices using an upwind scheme, based on the selective reduced
integration proposed by Hughes (1978). Wahl et al. (1996) developed an efficient FEM upwind
scheme, based on the streamline-upwind/Petrov-Galerkin formulation devised by Brooks &
Hughes (1982), to study slider bearings for hard disk drives. Bonneau et al. (1993) performed a
FEM analysis of grooved gas bearings employing an upwind scheme based on Heinrich et al.
(1977). FEM procedures using principles of adaptive methods have been developed by Hendriks
(1988) and Nguyen (1994) to analyze slider bearings in computer peripheral devices.

Upwind methods generally require special schemes to evaluate the advection flow terms of
the Reynolds equation. In this paper, a novel and efficient FEM procedure is developed to
analyze high speed hydrodynamic gas bearings. This novel procedure founded on the Galerkin
weighted residual method employs a novel class of high-order shape functions different from the
polynomials widely used in the FEM. The high-order shape functions are analytically determined
from an approximate solution to the non-linear Reynolds equation within an element. The
advection flow terms are evaluated without resort to special numerical schemes. Steady-state
analyses of one-dimensional gas-lubricated plane slider and Rayleigh step gas bearings are
carried out to validate the novel procedure. The novel high-order FEM procedure performs as
efficiently as procedures based on the Petrov-Galerkin method without introducing numerical
diffusion into the solution.

2. GAS BEARING MODELING

Two simple gas bearing geometries, shown in Fig. 1, are studied to test the novel finite
element procedure.

The dimensionless form of the steady-state one-dimensional Reynolds equation for
isothermal ideal gas flows (DiPrima, 1968) is expressed as
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where P is the dimensionless hydrodynamic pressure along the bearing. The bearing leading and
trailing edges are at atmospheric pressure ( 10 == )L(P)(P ). H is the dimensionless fluid film

thickness ( 2hhH = ). X is the dimensionless axial coordinate ( LxX = ) and L is the bearing

length. Λ is the bearing number or compressibility number given by
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where u is the velocity of the runner surface and Pa is the atmospheric pressure. The fluid
viscosity is given by µ. The bearing number is an important parameter in gas lubrication
problems, since it describes the level of the fluid compressibility as function of the sliding speed.
For low bearing numbers, Eq. (1) is an elliptic-type differential equation, while for high bearing
numbers (Λ→∞) this equation becomes a parabolic-type differential equation.
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Figure 1 – Schematic views of a plane slider bearing (a) and a Rayleigh step bearing (b).

3. FINITE ELEMENT FORMULATIONS

Two finite element procedures are employed to solve the steady-state Reynolds equation for
gas slider bearings. An upwind FEM scheme, based on the Petrov-Galerkin weighted residual
method using non-symmetrical weighting functions, and the novel high-order FEM scheme
based on the Galerkin method, are implemented into the same generic algorithm to permit
comparisons of computational efficiency and accuracy.

3.1 A Petrov-Galerkin FEM Scheme

The flow domain is divided into two-node finite elements. The steady-state Reynolds
equation for an arbitrary finite element (e) is given by
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where Xe (0≤Xe≤1) represents the element local axial coordinate and le is the element
dimensionless length (le=Le/L). The dimensionless flow rate within the finite element domain is
represented by me. Linear polynomial interpolation functions {Ni

e}i=1,2 for pressure and quadratic
polynomial weighting functions {ψi

e}i=1,2  introduced by Heinrich et al. (1977) are used in the
formulation.
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α is an upwind parameter (0≤α≤1) controlling the level of upwinding in the solution. The proper
selection of α is crucial to avoid numerical artificial diffusion in the computations. Full
upwinding effects are obtained for α=1, while for α=0 the procedure becomes the classical
Galerkin or Bubnov-Galerkin weighted residual method.

The following element equation for pressure is derived using the polynomials given in Eq.
(4)
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In the Petrov-Galerkin method, the weighting functions are different from the shape
functions only in the evaluation of the advection terms, given in the second right-hand side term
of Eq. (6). The element fluidity matrix takes the following form
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The global fluidity matrix obtained by assembling the element matrices given in Eq. (7) is
an asymmetric tri-diagonal matrix. When Λ increases the global fluidity matrix tends to become
ill conditioned if α=0. The proper selection of α makes the fluidity matrix remain diagonally
dominant for any bearing number. The method of successive substitutions (Stewart, 1996) is
used to solve the finite element system of equations. Ambient pressure is used as the initial value



of pressure field in the iterative process that ends when 6
n1n 10PP −

+ <− , where Pn+1 and Pn are

the dimensionless pressures computed at iterations (n+1) and (n), respectively. The
dimensionless bearing load capacity Fz is computed by integrating the pressure field (P-1) over
the bearing domain.

3.2 The High-Order Galerkin FEM Scheme

A novel family of shape functions is analytically obtained from the approximate solution of
the dimensionless one-dimensional Reynolds equation for an element (e).
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Over an element domain, ( )3
ee HP  and ( )eHΛ  are computed from averaged values of pressure

and film thickness. Equation (8) is re-written in linear form as
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λ =  is a local bearing parameter computed for meaningful averaged values of

pressure (Pav)  and film thickness (Hav) within (e). Solution of Eq. (9) renders two exponential
shape functions hereby called “exact” shape functions,
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The “exact” shape functions are used as both the interpolation and weighting functions in
the computation of the element fluidity matrix. These functions are of higher order than the order
of polynomials widely used in the FEM. The fluidity matrix for an element (e) is given by
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For the limit case Λ→0, the “exact” shape functions produce the same fluidity matrix as that
given by the classical Galerkin method using linear shape functions. For ∞→Λ , the fluidity
matrix has the same structure as that obtained by the Petrov-Galerkin method with full upwind.
The upwinding effect is intrinsically contained in the “exact” functions without resort to special
schemes for the advection terms. No artificial viscosity is therefore introduced into the solution.



4. NUMERICAL RESULTS

The validation of the finite element procedures herein developed and an analysis of accuracy
and efficiency of the high-order Galerkin FEM scheme follow. A full upwind parameter, α=1, is
used in all computations performed with the Petrov-Galerkin scheme.

4.1 Validation

A first example for validation of the FEM procedures shows the predictions of the
dimensionless pressure distribution of a plane slider bearing with film thickness ratio h1/h2=3 and
Λ=10 as computed by Reddi & Chu (1970). Figure 2 depicts comparative results for the
dimensionless pressure predicted by the Petrov-Galerkin and high-order Galerkin schemes for a
domain with 40 elements. Both FEM schemes render satisfactory results for this low bearing
number example. However the full upwind Petrov-Galerkin scheme presents some loss in
accuracy due to the numerical artificial diffusion, which is caused by the use of full upwind
parameter in a diffusion-dominated problem. No numerical diffusion is introduced into the
solution computed by the high-order Galerkin scheme.

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X

D
im

en
si

o
n

le
ss

 P
re

ss
u

re

Reddi & Chu

High-order FEM

Petrov-Galerkin FEM

Figure 2 – Comparative results for dimensionless pressure on a plane slider bearing.

The computation of the dimensionless bearing load capacity of Rayleigh step bearings is the
second example selected to validate the FEM procedures. Predictions obtained by both the
Petrov-Galerkin and High-order Galerkin schemes for domains with 100 elements are compared
with the linearized solution presented by Hamrock (1994). Figure 3 shows the comparative
results for three cases of Rayleigh step bearings (L1/L2=1). As the film thickness ratio (h1/h2)
increases, the difference between the linearized and the FEM solutions increases. The linearized
solution generally overpredicts the load for low bearing numbers (Λ<50) and under-predicts it
for moderate and high Λ. All solutions tend to the same asymptotic values as the bearing number
increases.
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Figure 3 – Dimensionless bearing load capacity for Rayleigh step bearings (L1/L2=1).

4.2 Efficiency of the High-order Scheme

The computational efficiency of the high-order Galerkin scheme is evaluated against the
Petrov-Galerkin scheme. Figure 4 depicts the normalized computational times, obtained by both
the Petrov-Galerkin (dotted line) and high-order Galerkin (solid line) schemes to compute the
load capacity of gas plane slider bearing with h1/h2=3 for low, moderate and high bearing
numbers (Λ), versus the number of elements. The normalization is performed in relation to the
lowest computational time taken by the high-order scheme. Both schemes perform similarly in
this example. For high bearing numbers and large number of elements the Petrov-Galerkin
scheme seems to present a performance slightly superior. Predictions for load capacity computed
by both schemes present relative deviation of 1.3 % for Λ=10 and meshes with 100 elements. For
all other cases, the relative deviations are smaller than 1 %.
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Figure 4 – Efficiency of the FEM procedures for a plane slider bearing (h1/h2=3).



The computational efficiency of the FEM procedures is also evaluated for a case of
Rayleigh step bearing (h1/h2=2, L1/L2=1) at three bearing numbers (Λ). Figure 5 depicts the
normalized computational times taken by both schemes to compute the load capacity of a
Rayleigh step bearing versus the number of elements. Again both schemes present similar
performance. However, for high bearing numbers and large meshes the high-order Galerkin
scheme tends to perform more efficiently than the Petrov-Galerkin scheme. For Λ=10 and
meshes with 100 elements, predictions obtained by both schemes present relative deviation of
1.40 %. For all other cases, the relative deviation is smaller than 0.71%.
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Figure 5 – Comparative computational efficiency for a Rayleigh step bearing (h1/h2=2, L1/L2=1).

To illustrate the limitations of conventional numerical procedures in dealing with high speed
gas bearing problems, Fig. 6 shows the pressure distribution computed by the classical Galerkin
(dotted line) and high-order Galerkin (solid line) FEM schemes for two cases of Rayleigh step
bearings (L1/L2=1), at bearing number Λ=1000. The number of elements is 100 in all cases.
Numerical oscillations usually arise in the solution provided by the classical Galerkin method in
the regions of large pressure gradients (trailing edge of the bearing). A remedy for the classical
scheme would be to use very fine meshes, with about 350 elements, to render results as accurate
as those provided by the high-order scheme. The classical Galerkin FEM scheme shows poor
computational efficiency for high speed gas bearings.
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CONCLUSIONS

Demands for more efficiency and higher productivity have prompted the development of
efficient and accurate engineering tools to analyze bearings with compressible fluids operating at
high speeds. A novel finite element procedure, based on a high-order formulation of the Galerkin
weighted residual method, is shown to be as efficient as upwind finite element procedures in the
analysis of high speed gas bearings, without resort to any special scheme for evaluation of the
advection flow terms of the Reynolds equation. The accuracy and efficiency of the high-order
scheme are successfully tested for one-dimensional gas-lubricated plane slider and Rayleigh step
bearings.
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