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Abstract. The rheology of some concentrated solutions of polymers and polymer melts is
predicted adequately by the Phan-Thien—Tanner (PTT) constitutive equation (Larson, 1988,
Quinzani et al, 1995). Such model fluids are frequently used to simulate real fluids encountered
in industry, in processes involving high temperatures and heat transfer operations, and are
also useful to assess the performance of numerical codes.

For the simplified version of the PTT fluid model, an exact solution is derived for thermal
and hydrodynamic fully-developed pipe and channel flows. The analysis considers a constant
wall heat flux boundary condition and shows that fluid elasticity is responsible for an
enhancement in heat transfer of at most 15.8% for the pipe flow and of 11.1% for the channel
flow.

Keywords: Viscoelastic, Phan-Thien—Tanner model, Heat transfer enhancement, Pipe flow

1. INTRODUCTION

The Phan-Thien—Tanner (PTT) constitutive equation was derived from considerations

of network theory by Phan-Thien and Tanner (1977) and is a simple model often used to

simulate the rheological behaviour of polymer melts and concentrated solutions as in Quinzani

et al (1995).

The simplified version of the PTT constitutive equation (SPTT) becomes

Y trτ ,T( )τ + λ τ
∇
= 2ηD (1)

where τ
∇

 stands for Oldroyd's upper convected derivative of the stress tensor τ

τ
∇
= Du

Dt
− τ .∇ u − ∇ uT.τ (2)

In order to simplify the analytical derivation we use th linearised stress coefficient

without temperature dependence:

Y trτ( ) = 1+ ελ
η

trτ (3)

In the above equations ε is a free parameter related to the extensional properties of te

fluid; it imposes an upper limit to the elongational viscosity which is proportional to its

inverse. When ε = 0, the upper-convected Maxwell model is recovered, which has an

unbounded elongational viscosity in simple extensional flow. The parameter ε may have an
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influence on the shear properties as well, imparting shear-thinning to the fluid provided its

value is not too small (Phan-Thien (1978) has shown no effect of ε when it is of the order of

10-2). In the equationsλ is a relaxation time, η is a viscosity coefficient equal to the product of

the relaxation time by the relaxation modulus λG , D is the rate-of-strain tensor and  tr ττττ  is the

trace of the stress tensor ττττ .

Viscoelastic fluid flow through pipes and channels is relevant in many industrial

processing applications. In polymer processing, for example, melts flow in pipes at high

temperatures before extruded and therefore knowledge of the temperature distribution and

heat transfer coefficients is important for good design of polymer processing equipment. The

current work contributes to a better understanding of the heat transfer phenomena in elastic

liquids with view to improved engineering design.

The analytical hydrodynamic solution of the simplified PTT fluid flowing in a pipe and

a channel has been obtained recently by Oliveira and Pinho (1999). Based on that solution we

analyse now the corresponding heat transfer problem and derive the temperature distribution

and heat transfer coefficient. It is remarked that for similar problems involving inelastic non-

Newtonian fluids there is already a wealth of knowledge, in particular for fluids obeying the

power law model (see, for instance, Irvine and Karni, 1987).

In the next section the problem is formulated and the solution of the corresponding

hydrodynamic problem will be presented. Then, the analytical solution will be derived in

detail for the heat transfer problem and the effect of the rheological parameters on the relevant

heat transfer quantities will be discussed. The derivation and discussion of results will be

carried out in detail for the pipe flow geometry only, whereas for the equivalent planar

geometry the final results will be presented without further comment.

2. FORMULATION OF THE PROBLEM

The flow is considered to be fully-developed both thermally and hydrodynamically. It is

also assumed that the flow is steady, laminar and has constant properties, i.e., no dependence

of the fluid properties and model parameters on temperature will be considered. The boundary

condition is that of an imposed heat flux at the pipe wall.

The energy equation to be solved in the axisymmetric case is

k
1

r

∂
∂r

r
∂T

∂r





= ρcpu

∂T

∂x
(4)

where k, ρ  and cp stand for the thermal conductivity, density and specific heat, respectively.

The temperature T varies radially (r) and axially (x) and u stands for the longitudinal velocity

component. Effects of viscous dissipation are here neglected and will be investigated in future

work.

The thermal boundary conditions are then

∂T

∂r r=0
= 0 (5)

expressing axisymmetry and a constant heat flux at the wall

 −k
∂T

∂r r=R
= q̇w (6)

The velocity profile required in Eq. (4) takes the form derived by Oliveira and Pinho

(1999) and given in Eq. (7)

u

u
= 2

uN
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(7)
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Here the non-dimensional group De ≡ λ u R is the Deborah number, a measure of the

level of elasticity in the fluid. It is based on the cross-sectional average velocity  u  for the

PTT fluid. uN  is the average velocity for a Newtonian fluid flowing under the same pressure

gradient dp dx

 uN ≡
− dp dx( )R2

8η
(8)

and was shown to be given by:

uN

u
=

4321/6 δ2 3 − 22 3( )
6b1 2δ1 3  with δ = 33b + 4( )1 2

+ 33 2 b1 2
 and b = 64

3
εDe2

(9)

For the following derivations it will be advantageous to use a modification of b , which

we will designate as a , which is defined below.

a ≡ 16εDe2 uN

u







2

 (10)

This non-dimensional parameter gives a measure of both the extensional (measured by ε)
and the elastic (measured by De) properties of the fluid.

3. ANALYTICAL SOLUTION

Since the analytical solution for the velocity profile is known, the derivation of the heat

transfer quantities follow the same steps as in the corresponding classical Newtonian case (see

for instance Holman, 1981).

3.1 Pipe flow

The constant wall flux boundary condition (Eq. 6) implies that the cross-section average

temperature ( T ) must increase longitudinally at a constant rate. This, together with the

condition of thermal fully-developed flow, implies a constant longitudinal gradient of

temperature ∂T ∂x .

The velocity from Eq. (7) is replaced in the energy Eq. (4) which can then be integrated a

first time. The axisymmetry boundary condition (Eq. 5) is applied next to solve for the first

constant of integration leading to the radial distribution of the gradient of temperature

∂T

∂r
= 2RuN

α
dT

dx

1+ a( )
2

r

R
− 1

4

r

R






3
− a

6

r

R






5











(11)

where the thermal properties have been compacted into the definition of the thermal

diffusivity

α ≡ k

ρcp

This equation is now integrated a second time and the second boundary condition is

applied indirectly. Instead of using immediately Eq. (6), it is more convenient to introduce

now the centreline temperature Tc and to relate it at a later stage with the wall heat flux, by

making use of the definitions of q̇w  and of the bulk temperature T . Thus, the temperature

distribution becomes

T − Tc =
2uN R2

α
dT

dx

1+ a

4

r

R






2
− 1

16

r

R
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(12)
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The wall temperature is easily obtained from Eq. (12) by setting T = Tw  at r R = 1 and

is given by

Tw − Tc =
uN R2

2α
dT

dx

3

4
+ 8

9
a





(13)

The heat transfer coefficient (h) for this forced convection flow is defined from the wall

heat flux q̇w   as

q̇w ≡ h T − Tw( ) (14)

where the cross-section average temperature is given by

T ≡

2πuTrdr

0

R

∫

2πurdr

0

R

∫
(15)

The denominator of Eq. (15) represents the volumetric flow rate πR2u . Oliveira and

Pinho (1999) give the following expression for the bulk velocity

u = uN 1+ 4

3
a



 (16)

to be used in the ensueing analysis. Note, however, that a still depends on u . Upon

substitution, integration of Eq. (15) yields the bulk temperature

T − Tc =

uN R2

α
dT

dx

13

54
a2 + 17

45
a + 7

48






1+ 4

3
a

(17)

The boundary condition (Eq. 6) is now introduced through the heat transfer coefficient

h =
−k

∂T

∂r




 r=R

T − Tw
(18-a)

which is calculated next and presented in non-dimensional form as a Nusselt number

Nu ≡ DHh

k
= 2Rh

k
= 2Rq̇w

k T − Tw( ) (18-b)

After performing the necessary substitutions in Eq. (18-b) we obtain:

Nu =
1+ 4

3
a





2

19

54
a2 + 17

30
a + 11

48






(19)

Equation (19) reduces to the well-known Newtonian solution of Nu=4.364 (Holman,

1981)in the absence of either elasticity or extensional effects (both leading to a = 0 ). For

a → 0, it gives Nu = 5.053.

The above equation for the temperature profile T(r) can also be casted into a non-

dimensional form using the usual definition

θ(r) ≡ T(r) − Tw

T − Tw
(20)

and the resulting profile is:
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θ(r) =
−2 1+ 4

3
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(21)

However, as will be shown in the discussion section, the dimensionless temperature

defined by Eq. (21) is not so illustrative and improved understanding of the phenomena

involved will require a different scaling and the following expressions for the various relevant

temperature differences:

T(r) − Tw( )k
q̇wR

= −1

1+ 4

3
a

1+ a( ) r
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(22)

Tw − Tc( )k
q̇wR

= −

3

4
+ 8

9
a

1+ 4

3
a

 (23)

T − Tc( )k
q̇wR

= −
2

13
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

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3
a
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
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2 (24)

3.2 Channel flow

For the channel flow the analytical derivation is similar and is based on the

hydrodynamic solution of Oliveira and Pinho (1999). The analysis starts with the set of

equations corresponding to Eqs. (4) to (10) for the plane channel and the results are presented

below without any other details. The tranverse coordinate is y and the channel half-width is

equal to H.

For this flow geometry we use

a ≡ 9εDe2 uN

u







2

(25)

and we obtain the following results. The transverse distribution of temperature is

T − Tc =
3uN H2

2α
dT

dx
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(26-a)

and in non-dimensional form

θ(y) = −
1+ 6
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From Eq. (26-a) we get the wall temperature by setting y/H=1

Tw − Tc =
3uN H2

4α
dT

dx

5

6
+ 14

15
a





(27)

The cross-sectional average temperature is given by



6

T − Tc =

9uN H2

20α
dT

dx

108

231
a2 + 145
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a + 13
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
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
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5
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(28)

The final expression for the Nusselt number Nu ≡ 4Hh

k




  becomes

Nu =
4 1+ 6

5
a





2

1212
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a2 + 116
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a + 17
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





(29)

Similarly to the pipe flow, Eq. (29) reduces to the well known Newtonian value ( a = 0 )

of Nu = 8.235  and tends to 9.149 when a → ∞ .

4. DISCUSSION OF RESULTS

In Fig. 1 the Nusselt number of Eq. (22) is plotted as a function of the Deborah number

and parameter ε . The Nusselt number varies between two asymptotic values: the Newtonian

value of 4.364 in the limit of low elasticity and ε , and 5.053 which is the limit of Eq. (19) as

a → ∞ . The variation corresponds to an increase of at most 15.8% relative to the Newtonian

value.
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4.7

4.8

4.9

5.0

5.1

10-2 10-1 100 101 102 103

Nu

De

ε= 0.001

ε= 0.01

ε= 0.1

ε= 0.25

Figure 1) Variation of the Nusselt number as a function of the Deborah number and ε.

The effect of the elongation-related parameter ε  is to anticipate the transition to lower

values of the Deborah number. It is important to note however, that as ε → 0 the Nusselt

number reamins constant at the Newtonian value of 4.364 for all De. The heat transfer

enhancement by viscoelasticity observed in Fig. 1 is related to the way the velocity profile is

modified when ε  and De are increased. Oliveira and Pinho (1999) have shown that increasing
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values of εDe impart shear-thinning behaviour to the fluid with flatter velocity profiles in

the core and higher wall shear rates, as can be assessed in the velocity plot of Fig. 2.

0.0

0.5

1.0

1.5

2.0

0.0 0.2 0.4 0.6 0.8 1.0

u/U

r/R

Figure 2- Velocity plot of the linear PTT fluid in pipe flow as a function of the dimensionless

group εDe. (solid line: parabolic profile; increased dashed lines: εDe= 0.1, 0.5 and 1.0).
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1.5

2.0

0.0 0.2 0.4 0.6 0.8 1.0

θ

r/R

Figure 3) Effect of De on the radial variation of the standard normalised temperature θ  for

ε = 0.1. (solid line: De= 0; increased dashed lines: De= 0.1, 1, 10)

Plots of the dimensionless temperature θ  are presented in Fig. 3 and 4 to assess the

effects of De  and ε . The standard way of making temperature non-dimensional, based on Eq.
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(20) and shown in Figs. (3) and (4), is not appropriate for the situation of imposed heat-flux

because the temperature scale in denominator (∆T = T − Tw ) also varies with the relevant

parameters and may lead to misinterpretation of the corresponding variation of T. For

example, in both figures the range of non-dimensional temperatures θ  within the pipe

increases with ε  and De when in fact the range of dimensional temperatures T  is reduced due

to an increased heat transfer coefficient, for an imposed constant heat flux.
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1.0

1.5

2.0

0.0 0.2 0.4 0.6 0.8 1.0

De=1,ε=0.1
De=1,ε=0.25
De=10,ε=0.1
De=10,ε=0.25

θ

r/R

Figure 4) Effect of ε and De on the radial variation of the standard normalised temperature θ .
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Figure 5) Radial profiles of the normalised temperature as a function of Deborah for ε= 0.1.

(solid line: De= 0; increased dashed lines: De= 0.1, 1, 10)
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Another apparent contradiction concerns the temperature gradient at the wall. Whereas

the gradient of the non-dimensional temperature q is seen to increase with fluid elasticity, the

gradient of the temperature T must remain constant  for a given q̇w . In fact, for a given q̇w ,

the unknown of the problem is ∆T  and it is thus more convenient to define a fixed

temperature scale for normalisation that we take as q̇wR k . Now, with this normalisation of

the temperature the slope of the curves near the wall must be equal to -1 for all cases, as is

apparent in Fig. 5.

 Fig. 5 shows one set of temperature profiles made non-dimensional with this fixed

temperature scale for various Deborah numbers, at ε=0.1. This plot makes clear the

forementioned effect of increased elasticity in reducing the range of temperature variation

accross the pipe section, thus leading to somewhat higher Nusselt numbers (cf. Eq. 18-b).
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-0.6

-0.5

-0.4

-0.3

-0.2

10-2 10-1 100 101 102

(T
-T

c)k
/q

w
/R

   
   

(T
w
-T

c)k
/q

w
/R

De

T

T
w

Figure 6) Variation of the normalised bulk and wall temperatures with the Deborah number for

the cases without (De= 0, solid) and with (De= 5, dashed) elasticity. Increased dash lines: ε =
0.01, 0.1 and 0.25.

Finally, in Fig. 6 are plotted curves  of 
Tw − Tc( )k

q̇wR
 from equation (23) and 

T − Tc( )k
q̇wR

from Eq. (24) as a function of De, for various values of ε . Both quantities show the same

asymptotic behaviour of the Nusselt number plots. The effect of elasticity is felt more

intensely by the wall temperature than on the bulk temperature since the thermal resistance is

lower for the fluid layer closer to the wall and also because elasticity increases the proportion

of the total flow rate that flows in the vicinity of the wall.

Note that the combined effects of ε and De are felt via a and they actually act as a single

non-dimensional number εDe, which implies that variations of De have a stronger impact

than similar variations of ε.
For the channel flow similar conclusions could be drawn from a similar study.
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5. CONCLUSIONS

Temperature distributions and heat transfer coefficients were obtained analytically for

fully-developed pipe and channel flows of a simplified Phan-Thien—Tanner fluid when the

stress coefficient assumed a linear form and the effect of temperature variations on the

material parameters was neglected. Viscous dissipation was not accounted for.

An increase of fluid elasticity (De) and/or an increase of ε resulted in enhanced heat

transfer coefficients with the Nusselt number limited by two asymptotic values: for low

values of εDe the Nusselt number takes the Newtonian value of 4.364 and at high elasticity

it tends to 5.053, a maximum increase of 15.8%. The solution shows that the enhanced heat

transfer coefficient results from a reduction in the range of temperatures within the pipe, with

a stronger impact felt in the wall region. Thus, in order to transfer a certain amout of heat the

viscoelastic fluid will require a smaller difference between the wall and the bulk temperatures

than the Newtonian fluid. These effects are the consequence of εDe in imparting a shear-

thinning behaviour to the velocity profile.

Purely elastic fluids like the upper convected Maxwell fluid ( ε = 0 , De ≠ 0) have heat

transfer characteristics equal to those of Newtonian fluids.
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