
ANALYSIS OF STOCHASTIC STRUCTURES BY PERTURBATION METHOD

Alberto C.G.C. DINIZ
Universidade de Brası́lia, Departamento de Engenharia Mecânica
70910-900 Brası́lia - DF - Brasil
Fabrice THOUVEREZ
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Abstract. In this paper we analyze the modal characteristics of structures including random
parameters. We compute the mean value and the standard deviation of the eigenvalues and
eigenvectors and also of the transfer functions. The stochastic finite element method base on
Perturbation technique, will be used to do so. The stochastic finite element method attempt to
combine the finite element analysis and the stochastic analysis. Limits of perturbation approach
are studied in terms of sensitivity of the solution (modal parameters and transfer functions) ver-
sus the random parameters values. A Monte Carlo Simulation is used to validate our results.
In order to reduce the number of degrees of freedom of the model and the time consuming, a
modal synthesis approach extended to the case of structures defined by stochastic parameters
is used. We will emphasize the efficiency of this procedure in the estimation of the mean value
and the standard deviation of the modal parameters.
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1. INTRODUCTION

The extension of the finite element method to take in account the uncertainties in the geom-
etry or material properties of a structure, as well as the applied loads, is spelled Stochastic Finite
Element Method. This field has recently become an active area of research because of percep-
tion that in some structures the response is strongly sensitive to the small random variation in
material properties or geometry of the structure. Eccentricity in cross-section, differences of
mass density and/or Young’s modulus are examples of randomness of structural engineering
problems. Such uncertainties are usually spatially distributed over the region of the structure
and should be modeled as random fields. Several methodologies can be adopted to evaluate
structural response uncertainties. Early applications used the Monte Carlo simulation (Astill
et al., 1972), which computes the responses for a (large) set of random numbers represent-
ing the uncertainties. Such a method is time consuming and needs a lot of CPU. Later, the
Taylor series expansions, sensitivity vectors methods and perturbation methods were used to
compute the second-moment statistics of response quantities in structural applications. These



methods are mathematically identical to the second order of perturbation method (Benaroya
& Rehak, 1988). The basic idea of the second-moment analysis of stochastic systems by per-
turbation method, is to expand, via Taylor series, all the stochastic field variables about the
mean values of random variables, to retain only up to second-order terms. The output expec-
tations and cross-covariances are obtained from the inputs expectations and cross-covariances.
This method is much faster than the Monte Carlo one, but it is limiting of the low values of
dispersion (Kleiber & Hien, 1992). However, the development of Taylor of the random fields
discretized by finite element makes increase the number of equations to solve. If we are in-
terested in solving industrial problems; then this technique is too much time consuming. In
order to reduce the number of degrees of freedom of the model and the time consuming, the
Component Modal Synthesis methods are frequently employed in structural dynamics. These
methods, presented in several reviews (Craig-Jr, 1987, by example) and numerous papers, ap-
ply the sub-structuring techniques to reduce the size of the problem. The Stochastic Component
Modal Synthesis method, presented in this paper attempt to reduce the size of the problem using
a modal synthesis approach extended to the case of structures defined by stochastic parameters.

2. PERTURBATION TECHNIQUE

We consider a conservative dynamic system discretized by a finite element mesh, with
random design parameters. For example, we take a bar subjected to axial vibration divided into
two parts with different random Young’s moduli. For simplification, the Young’s moduli are
time and spatial invariant. It is also assumed that all the others parameters are deterministic. So,
we have two statistically independent Gaussian random variables (eN = 2) ”E1” and ”E2”.

E1 E2

Figure 1- Clamped-clamped bar with two random Young’s moduli statistically independent.

Since the mass matrix is independent of the random variables, the eigenproblem of the
studied bar is given by: (withN = number of DOF)

([K(E1; E2)]� !2

j (E1; E2)[M ])f�j(E1; E2)g = f0g j = 1; 2; :::N (1)

By employing the Taylor series, we expand the stiffness matrix and eigenmodes retaining
up to the second-order terms: (witheN = number of random variables)
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By simplicity we use the following notation:
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To a bar, the stiffness matrix second derivative versus the Young’s module is zero, then the
second term in the Eq. (2) vanish.

By Substituting the expansions (2) to (4) into Eq. (1), multiplying the second-order terms
by the probability density function of the random variables and integrating over the domain of
these variables, we get the equations for the stochastic eigenproblem. By collecting terms of
equal orders we have:
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Second-order : One system of ”N ” equations
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with:
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Where ”Cov(E
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�
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�
” and ”E

�
” cross-covariance(�; � = 1; 2; : : : eN).

In the case of the variables are statistically independents and adopting the solution technique
proposed by Kleiber & Hien (1992), we get these expressions for the mean and variance values:
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with the partial derivatives of the eigenvalues defined as:
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The eigenvectors derivatives are defined as a linear combination of the ”m” first zeroth-
order eigenvectors (Fox & Kapoor, 1968):
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It should be emphasized that the occurence of the double sums in the Eq. (7) it makes with
that the formulation described above requires only one second-order system to be solved instead
of eN( eN +1)=2 systems apparently required if we look at the number of variables aleatoires and
the symmetry of the problem.

3. THE FREQUENCY RESPONSE FUNCTION TAYLOR’S EXPANSION

The Frequency Response Function (FRF) is a usual representation of the dynamic behavior of
systems, it is also a current form to identify them. Thus, in the study of the stochastic structures
it is interessant to have the stochastic expression of the FRF.

If we consider hysteretic damping into the bar, we have the following expression for the
FRF matrix components in modal expression:

Hkj(!) =
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By way of simplification, we take the damping ”�” as being independent of the random
variables. In this case, the Taylor series expansion terms of the FRF matrix components are:
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The expressions for the mean and variance values to the FRF matrix component ”kj” are:
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In our case, the variables are statistically independents and the Eq. (23) and Eq. (24) are
simplified.

4. STOCHASTIC FIXED INTERFACE COMPONENT SYNTHESIS METHOD

For large industrial problems, substructuration is an effective method for reducing the
number of DOF, and then the size of problems and time computation. Moreover, when coupled
with the perturbation method, substructuration enables the use of less random variables for
each substructure. We use the Craig and Bampton method here, because it is largely used
in the industrial applications. This method consists in describing the displacement of each
substructure as a superposition both of the fixed-interface modes, obtained by clamping the
boundaries, and of static deformations, defined from the interface DOF (Craig and Bampton,
1968).

The case of the clamped-clamped bar show in Fig. 1 is treated below as an example. By
dividing the bar in two substructures, each one associate to one Young’s Modulus, we have for
each substructure just one random variable, so that for� = 1 and2:
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where[K�] is the stiffness matrix associated to each substructure� .



As shown in section 2 only the stiffness matrix have a Taylor expansion, and according to
Craig and Bampton method, the Taylor’s serie terms of the stiffness matrix of the assembled
system are:

Zeroth-order:
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Second-order:
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Where[KR
bb]s is the stiffness matrix reduced at the boundary of the substructure ”s” and

[KR
msms

] is the constrained modes matrix of the substructure ”s” reduced to the ”m” first
modes. The subscripts ”b” are used to refer to the DOF number at the substructures inter-
face (b1 = b2 = b) and ”ms” are used to refer to the retained modes number at the substructure
”s”.

The Taylor expansions terms involved into the equations (26) to (29) are:

a.) Stiffness Matrix reduced at the boundary of the substructure

For each substructure ”s” (s = 1 and2), we have:
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Where :[I]bb denotes the unit matrix with dimension ”bb” associated to the boundary DOF
and[��

]ib denotes the statics modes matrix, defined by:
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Second-order:
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b.) Constrained modes matrix of the substructures reduced to the ”m” first modes.

For each substructure ”s”, we have:
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Substituting all those expressions into the eigenproblem of the assembled system we arrive
to the equations similar to (5)-(7), but with a reduced DOF number. The mass matrix of the
assembled system is not a function of the random variables and it is calculated using the classical
equations of the Craig and Bampton method.

5. APPLICATION AND NUMERICAL RESULTS

Let us consider the clamped-clamped bar shown in Fig. 1, of length 2[m], diameter
0.02[m] and density 7800[kg=m3

] with Young’s moduli meansE1 = E2 = 21 � 10
10
[N=m2

].
A Finite Element discretization is used, here with 100 elements. The comparison between the
Perturbation method and the Monte Carlo simulation (30000 iterations) is shown in Fig. 2 for
the third mode and a 5% standard deviation on the Young’s moduli. The shape mode obtained
by using Perturbation method is identical to Monte Carlo simulation. Even for larger standard
deviation values, the results remain accurate.
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Figure 2- Mean value and Standard deviation of the third eigenmode, for�1 = �2 = 0:05,
Monte Carlo (+ +) and Perturbations method (—)
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Figure 3- Evolution of the natural frequency mean versus the Young’s modulus standard
deviation values, Monte Carlo (—) and Perturbations method (� � � )

The figure 3 shows the natural frequency evolution versus the Young’s modulus standard
deviation values. Both methods lead to identical values. However, the comparison between the
FRF evaluated for both of the methods shows, for frequencies close to the natural frequencies of
the system, a large difference between the results of the Perturbation method and Monte Carlo
simulation. The figure 4 shows the mean values obtained by Perturbation method compared
with Monte Carlo simulation.

Application of the modal synthesis is presented in the Fig. 5. The Monte Carlo simulation
is computed for complete model and the 17 first modes are presented. The Perturbation solution
is built by applying the stochastic Craig et Bampton method and we have used 5 eigenmodes for
each substructure. As usual, substructuration yields truncated transfer function (the eigenmodes
of higher frequencies are not taken into account).
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Figure 5- Mean Transfer function (magnitude) for�1 = �2 = 0:05, Monte Carlo (—) and
Perturbations method (� � � ) with substructuration with 5 modes for each substructure.



6. CONCLUSION

A stochastic Component Modal Synthesis method, based an expansion in Taylor series about
the mean values, has been presented in this paper. The stochastic finite element method have
been tested on dynamical problems with good results for the computation of eigenmodes, even
for uncertainties with large magnitude. The main difficulty in the perturbation method is the
computation of the derivatives. Substructuration is very important in stochastic methods, based
an expansion in Taylor series. First, it reduces the number of DOF. Moreover each uncertainty
can be associated with a substructure. Then the computations are quite simplified and also
faster. For frequencies close to the natural frequencies of the system, the Perturbation method
is no more valid, and the expansion becomes divergent. A possibility for solve this problem is
to use a method, based on a Karhunen-Loeve decomposition coupled with a polynomial chaos
expansion and a Galerkin projection (Ghanem & Spanos,1991), what will be object of future
research.

The Stochastic Craig and Bampton method presented in this paper allows the computation
of the vibration frequency and modes shape for the structures with random parameters with
precision and a small cost of calculation.
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