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Abstract Since the publication of a book about the Dual Reciprocity Method in 1992 there has been

much rese arch into the development of approximation functions employed with the method. Many

new functions have been prop osed and used to solve engineering problems. Given this wealth of new

functions, it is important to be able to select an adequate function for a given problem, and in order

to do this it is necessary to know something about the prop erties and behaviour of each. To this end

in this pap erseveral examples ar esolved using a wide range of functions and the results obtained

with each function compar ed with a view to establishing tentative criteria for choosing the function.

Key Words: Dual Reciprocity; Boundary Elements; Approximation Functions; Comparative Er-

ror

1. INTRODUCTION

The Dual Reciprocity Method is a means of dealing with equations in BEM for which a

complete fundamental solution is either unavailable or inconv enient, leading to one or more terms

being \left ov er" as domain integrals after the usual operations on the Boundary Integral Equation.

The method permits these terms to be expressed as integrals over the boundary in a systematic

way.Using DRM we can apply Boundary Elements to a great many problems in engineering with

a knowledge of only a few basic fundamental solutions. All additional terms (non linear e�ects,

time derivatives etc) are treated as body forces and taken to the boundary using the method. The

method was �rst in troducedb yNardini and Brebbia, (1982). The method has a disadvantage of

introducing an additional approximation, the DRM approximating functions, f to be discussed

here. In the original work, the function f = 1 + r was employed, being adopted b ymost other

researchers until the beginning of this decade. With the publication of a book collecting appli-

cations to that point (Partridge et al, 1992), the number of researchers interested in the subject

increased considerably. The function r was identi�ed as being a \radial basis function" or RBF,

well known to mathematicians but new to engineers. F romthen on a relatively large n umber of

functions hav e been used successfully and many of them hav e been claimed to be a good or ev en



\optimal" choice by at least one author, thus creating a potentially confusing situation for those

interested in simply using the method.

At the current state of the art it is not possible to de�ne one single function and claim that this

is the best for all problems. A more practical approach to the question of selecting a function is to

establish which are appropriate for di�erent classes of problems and what are their limitations. In

this context, in this paper, di�erent types of problem are considered, and results presented using

a range of functions in an attempt to bring out their advantages and disadvantages and to suggest

which functions are appropriate for each type of application.

The examples considered are limited to potential type problems in two dimensions, the three

dimensional case requires a separate study; an appropriate function for a 3D problem is not nec-

essarily the equivalent of that for the 2D case.

2. DRM APPROXIMATING FUNCTIONS

The original DRM Approximation Function r was used by Nardini and Brebbia, combined

with the constant 1. r3 was found to be an improvement on r by Yamada et al, (1994) and Zhang

& Zhu (1994). The work by Yamada et al, (1994) followed mathematical work done by Powell,

(1990) and both of the functions r and r3 were identi�ed as belonging to a class of functions

known as Radial Basis Functions or RBF. The even powers of r (eg r2) are not RBFs and, if used

on their own in DRM, produce rubbish solutions. If combined with other legitimate RBFs, they

usually e�ect very little the solution, though it is better to avoid them completely. Another RBF,

the Thin Plate Spline or TPS r2log(r) has been employed for problems involving body forces of

high order, (Karur & Ramachandran, 1994). More recently the Higher Order Thin Plate Splines,

for instance r4log(r) are being mentioned. Other RBFs cited in connection with DRM involve

the use of user de�ned constants, for instance the Multiquadric and Gaussian RBFs, (Karur &

Ramachandran, 1994). The RBFs are also known as \local " functions given that they interpolate

only in the neighbourhood of a given node. The mathematician Golberg, (1995), who has made

several important contributions to the method, has manifested his surprise at the intuitive choice

of the function r by the authors of the original paper, Nardini & Brebbia, (1982). The present

author feels that this function was probably used because it was the only one on the list in the

original paper that could have been made to work at the time. In 1982 engineers were unaware

of RBFs or the software capable of inverting the nearly singular matrices associated with the

remaining (global) functions, see below. The surprising thing is not that r was chosen, but that it

was included in the list, if that function had not been \hit upon" DRM might never have existed.

For more than 10 years it was su�cient that a function existed which made the method operable.

The global approximating functions mentioned by Nardini and Brebbia, (1982), but not em-

ployed by them are, for example the terms from the Pascal Triangle, 1, x, y etc, used to develop

�nite element shape functions, the sine expansion sin(x), sin(y), and other sets of functions. These

functions have been investigated for use in DRM by Cheng et al, (1993) who give details about

how to implement them computationally.

The ATPS (Augmented Thin Plate Spline) was presented after a theoretical mathematical

study by Golberg & Chen (1994) as to what might be the optimum function for DRM, and has

been used successfully for many problems for instance in Bridges & Wrobel, (1996). This function

consists of the TPS combined with the augmentation functions 1, x, y, in such a way that the

function is neither local or global, but a combination of the two. Details of the implementation of

this function are given in Bridges & Wrobel (1996). However, in a later paper Golberg revised his

position, presenting the Augmented Multiquadric as the optimal interpolation function, (Golberg

et al, 1996)



Given the nature of the ATPS, which is an RBF combined with three terms from a global ex-

pansion, the present author postulated the generalization of this concept to the Hybrid Functions,

(Partridge & Sensale, 1997) in which an RBF is combined or augmented with terms from a global

expansion de�ned by the order and nature of the body force term to be approximated. Examples

of such functions are SAPT3 and TAGS4. SAPT3 consists of a R3 function Augmented with up

to the 3rd line of terms from the Pascal Triangle, ie terms 1, x, y, x2 xy and y2. TAGS4 consists

of a TPS augmented with the 9 terms sin(x), sin(y), .....sin(3y). The number at the end of each

Hybrid function name is the number of lines from the Pascal Triangle to be included, and is thus

one higher than the order of augmentation. Hybrid Functions can be \designed" for a speci�c

problem if necessary. One proviso: only Complete Sets of such functions should be employed,

(Cheng et al, 1993).

Thus one can employ local functions, Global functions or those which combine the two types.

The use of Global functions on their own requires special procedures as the matrices of coe�-

cients F tends to be nearly singular. Some comparisons with early local functions can be found

in (Partridge, 1995). This author feels these functions are much better employed combined with

the RBFs in the third category than on their own. The mechanism of the combination, (Bridges

& Wrobel, 1996) avoids completely the problems of ill conditioning of the matrices that are found

if these functions are used alone. Thus the global functions on their own will not further be

considered here.

The RBFs with user de�ned constants, particularly the multiquadric, is popular amongst

researchers who use these functions in methods other than DRM. The use of these functions in

DRM transfers the discussion from which is the most appropriate function to which is the best

value of the constant, introducing an additional optimization problem. A procedure for executing

this optimization is given in (Golberg et al, 1996). The parameter to be optimized, c in (r2+c2)1=2,

is mesh dependent, One value for the whole problem can be used for small problems, for prob-

lems involving subregions a di�erent value is required in each. Values for each point used can be

calculated if desired.

In the case of problems involving derivatives, the function r and the TPS will contain an

indeterminacy at r = 0 in @f
@x
. This does not prevent these functions from being used if the inde-

terminate value is �xed to zero. Further di�erentiation will produce a singularity at these points,

making the use of these functions inviable. r3 and r4logr do not contain this indeterminacy in @f
@x
.

Of the functions in current use only the multiquadric may be di�erentiated inde�nitely without

producing indeterminacies or singularities. The same seems to be true of the Gaussian function,

but this is not in current use in DRM, perhaps due to di�culties in �nding an appropriate par-

ticular solution.

The Dual Reciprocity Method itself is well known, and will not be described here, a full de-

scription is given in Partridge et al, (1992).

3. NUMERICAL EXAMPLES

3.1 Considerations about the presentation of error

Many di�erent schemes can be found in the literature for presenting the error encountered in

numerical solutions. The most common are to express the same as a mean percentage, �m, the

use of the di�erence in nodal values, �d, or the RMS error, �r :-

�m =
1

n

X
(
ucalculated � uexact

uexact

)�100

�d = uexact � ucalculated



�r =

r
(
X

(uexact � ucalculated)2=n (1)

In the above, u is the problem variable and n is the number of points considered.

�m can overestimate error, a small value of uexact can contribute over proportionately to the

result. Points with zero values of the exact solution cannot be taken into consideration, however

accurately or inaccurately the solution is calculated. In addition, the question of \average" values

can also conceal large di�erences in quality of results. �d can underestimate error, numbers of very

small order being common. The best way of using this is to present the largest error encountered.

The RMS error, �r avoids the problems mentioned above and will be used here unless stated oth-

erwise.

�r appears to have the following advantage: the number of zeros after the decimal allows one

to infer the number of decimal places calculated correctly. Some examples: �r = 0.0008: in this

case one can only expect two decimal places of accuracy in the numerical results, though some

will be correct to three places. �r = 0.0001: here nearly all results will be correct to three decimals.

3.2 Problem 1: known function as a body force
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Fig. 1 Elliptic Geometry

Here the problem considered is that of eq. (2)

r
2u = �x2 (2)

on an elliptical geometry with a semi-major axis of length 2m and a semi minor axis of length 1m

and the origin of coordinates in the center as shown in �g. 1, and subject to a boundary condition

u = 0 on �. Quadratic Elements are used. It can be shown that the exact solution for u is given

by

u = (50x2
� 8y2 + 33:6)(x2 + y2 � 1)=246 (3)

from which q on � can easily be obtained

q = �[(50x3 + 96y2x� 83:2x)n1 + (�32y3 + 96yx2 + 83:2)n2]=246 (4)

where n1 = x=R and n2 = 4y=R for R =
q
(x2 + 16y2). Please note that the exact solutions for

q for this and similar problems on elliptical geometries given in Partridge et al, (1992) should be



Table 1: Results for problem 1

Discretization #1 16 Elements; 7 Internal Nodes

r r3 TPS ATPS SAPT2 SAPT3 Exact

2 -1.005 -0.980 -0.971 -1.013 -0.996 -0.985 -0.984

4 -0.860 -0.848 -0.834 -0.862 -0.856 -0.854 -0.856

6 -0.478 -0.490 -0.465 -0.489 -0.496 -0.502 -0.502

8 -0.202 -0.227 -0.193 -0.223 -0.235 -0.244 -0.244

�r in q 0.026 0.019 0.035 0.028 0.022 0.018

�r in u 0.0077 0.0033 0.011 0.0036 0.0012 0.00019

Discretization #2 16 Elements; 17 Internal Nodes

r r3 TPS ATPS SAPT2 SAPT3 Exact

2 -0.995 -0.983 -0.980 -0.999 -0.991 -0.985 -0.984

4 -0.860 -0.852 -0.847 -0.858 -0.855 -0.854 -0.856

6 -0.494 -0.498 -0.491 -0.500 -0.501 -0.502 -0.502

8 -0.229 -0.240 -0.231 -0.239 -0.242 -0.244 -0.244

�r in q 0.010 0.016 0.016 0.023 0.022 0.018

�r in u 0.0023 0.00046 0.0019 0.00077 0.00022 0.00013

Discretization #3 32 Elements; 17 Internal Nodes

r r3 TPS ATPS SAPT2 SAPT3 Exact

2 -0.999 -0.985 -0.982 -1.001 -0.992 -0.987 -0.984

4 -0.860 -0.853 -0.849 -0.860 -0.857 -0.856 -0.856

6 -0.492 -0.498 -0.491 -0.499 -0.501 -0.502 -0.502

8 -0.227 -0.239 -0.231 -0.238 -0.242 -0.244 -0.244

�r in q 0.012 0.0036 0.0094 0.0076 0.0042 0.0025

�r in u 0.0026 0.00050 0.0019 0.00080 0.00018 0.00003

Discretization #4 64 Elements; 17 Internal Nodes

r r3 TPS ATPS SAPT2 SAPT3 Exact

2 -1.000 -0.982 -0.973 -0.996 -0.987 -0.984 -0.984

4 -0.860 -0.853 -0.849 -0.859 -0.856 -0.856 -0.856

6 -0.492 -0.498 -0.491 -0.499 -0.501 -0.502 -0.502

8 -0.226 -0.240 -0.231 -0.238 -0.242 -0.244 -0.244

�r in q 0.013 0.0030 0.0092 0.0066 0.0018 0.00020

�r in u 0.0026 0.00052 0.00092 0.00079 0.00017 0.000001



corrected, (Santiago Cruz, 1996). For the analyses carried out here, an LU decomposition solver

with partial pivoting was used and singular integration was carried out using a special logarithmic

numerical integration table.

Results are given in table 1 for a selection of approximating functions, for four di�erent dis-

cretizations, the number of boundary elements and internal nodes in each being as indicated.

Nodal results for q on the boundary are given for the four nodes numbered in �g. 1. After these

results, for each discretization, the RMS error �r for q on the boundary and for u at internal nodes

is given for that discretization for each f considered.

Overall, r3 does better than r, though the use or the RMS as an error measure diminishes

considerably the perceived advantage of the former. The relation can be expressed as follows:

results for most nodes are much better with r3, however at some points there is a bigger error

with this function, detected better with RMS. r improves better with increased internal points,

r3 improves with more boundary elements. Neither TPS or ATPS behaves better than r3, the

latter has only linear augmentation functions whereas the problem has a quadratic body force. If

mean percentage error, �m, is used, ATPS comes out better than r3. Best results are produced

by the SAPT3 Hybrid function with quadratic augmentation. Results for TAPT3 and RAPT3

(omitted) are the same as those for SAPT3. When augmentation functions which include the

body force term, in this case x2 in eq. (2), are used, boundary results become independent of

the RBF basis function employed, (Partridge & Sensale, 1997), and also of number of internal

nodes: SAPT3 repeats boundary results for meshes #1 and #2. Note that SAPT2 does better

than ATPS. (SAPT2 uses the r3 basis function whereas ATPS uses the TPS: both have linear

augmentation).

If one de�nes an acceptable error for this problem as �r � 0:0002, that is nearly all results

will be correct to 3 decimals, acceptable internal results are given by SAPT3 on mesh #1 and

#2, and by SAPT2 and SAPT3 on meshes #3 and #4. Internal results for r3 and ATPS are

close on meshes #2, #3 and #4. All results using r, and all results using the TPS without

augmentation except for mesh #4, are inaccurate. In the case of boundary results, acceptable

accuracy is reached on mesh #4 by SAPT3. Thus boundary results converge more slowly than

results for u at interior nodes, the former require a much �ner discretization than the latter in

order to obtain good accuracy. It is surprising to note that a greater accuracy on the boundary

can be obtained in elasticity problems with known body forces than is the case here for potential

problems, (Partridge & Sensale, 1997).

The Multiquadric function has been used to solve the problem under consideration in Golberg

et al, (1996), in which an optimization analysis is carried out �rst to �x the value of the shape

parameter. Results are given for a discretization involving 16 boundary nodes and 17 internal

points for u in the interior, calculated to an accuracy of 0:0000007 � �d � 0:0005. This level of

accuracy is compatible with that obtained by SAPT3 on #1 and SAPT2 and SAPT3 on meshes

#2, #3 and #4. The method used in Golberg et al, (1996), which di�ers from \traditional" DRM,

thus needs less nodes to obtain accurate results, however the DRM solutions presented here do not

require optimization, and in the case of SAPT2 and SAPT3 convergence is obtained by increasing

the number of boundary elements.

Thus problems with known functions as body force terms can be solved accurately in at least

three ways: by using the Multiquadric, by using a appropriate Hybrid function in DRM or by the

well known Method of Particular Solutions.

3.3 Problem 2: unknown function as body force

In this case the body force term involves the unknown function u, however no derivatives are



present. The problem considered is that of eq. (5)

r
2u = �u (5)

The same geometry as in the previous problem is considered. A boundary condition u = sin(x)

is imposed on � in such a way that

q = �cos(x)n1 (6)

where n1 is as in eq. (4). The same discretizations are considered as in the previous example.

Results are given for RMS error, �r in table 2 for u and q for each f .

In order to obtain multiquadric results, this function was incorporated into a standard DRM

code. The algorithm for obtaining the shape parameter described in Golberg et al, (1996), does

not apply in this case as the body force �u in eq. (5) is an unknown function. To circumvent

this, and given the range of values of c given for the previous example in Golberg et al (1996),

a search was carried out for each mesh starting from c = 0:5 using increments of 0:5: on �nding

a minimum, a local search with increments of 0:1 was carried out: the c used was that which

produced the lowest �r for q on the boundary. This procedure is not suitable for general use and

is only introduced here in order to obtain values for comparison. The shape parameter cannot be

�xed arbitrarily as values outside a small range will produce increasing error and eventual rubbish

solutions. The values encountered were: mesh #1 c = 1:5, mesh #2 c = 0:8, mesh #3 c = 1:2,

mesh #4 c = 0:6.

Table 2: RMS Error for results for problem 2

Discretization #1; 16 Elements, 7 Internal Nodes

�r r r
3

r
4logr SAPT2 VAPT2 VAPT3 (r2 + c

2)1=2

q 0.0044 0.0045 0.0050 0.0043 0.0049 0.0049 0.0033

u 0.0013 0.00019 0.00062 0.0002 0.00011 0.00011 0.00013

Discretization #2; 16 Elements; 17 Internal Nodes

r r
3

r
4logr SAPT2 VAPT2 VAPT3 (r2 + c

2)1=2

q 0.0031 0.0044 0.0039 0.0039 0.0049 0.0049 0.0030

u 0.00052 0.000056 0.00010 0.000057 0.000040 0.000040 0.000047

Discretization #3; 32 Elements, 17 Internal Nodes

r r
3

r
4logr SAPT2 VAPT2 VAPT3 (r2 + c

2)1=2

q 0.0023 0.0015 0.0013 0.0015 0.0012 0.0012 0.00088

u 0.00047 0.000059 0.00010 0.000066 0.000020 0.000020 0.000033

Discretization #4; 64 Elements, 17 Internal Nodes

r r
3

r
4logr SAPT2 VAPT2 VAPT3 (r2 + c

2)1=2

q 0.0022 0.00074 0.0010 0.00081 0.00032 0.00032 0.0011

u 0.00046 0.000060 0.00011 0.000067 0.000020 0.000020 0.000077

To �x an acceptable error for this case it must be remembered that one cannot expect the

same level of accuracy in problems for which the body force is an unknown function. Results show

about 3 decimal places of accuracy for q on the boundary in the case of the Multiquadric on mesh

#3, and r3, SAPT2 and VAPT2 on mesh #4. Results for u on the interior are an order of magni-

tude more accurate, three decimals of accuracy being obtained for all of the functions considered

from mesh #2 onwards. The lowest error is shown by the Hybrid function VAPT2 (a higher order

TPS with linear augmentation), �r = 0:00002 on mesh #4. VAPT3 with quadratic augmentation

repeats VAPT2. The multiquadric diverges on mesh #4, this function does not need such a high



density of boundary nodes, and produces accurate results on mesh #3. r3, SAPT2, VAPT2 and

the multiquadric perform best for this case.

3.4 Problem 3: unknown function including derivatives as body force

Here the problem considered is that of eq. (7)

r
2u = �

@u

@x
(7)

The same geometry and discretizations used in the previous problem are considered. A

boundary condition u = exp(�x) is imposed on � in such a way that

q = �exp(�x)n1 (8)

where n1 is as in eq. (4). First, results for RMS error will be given for the meshes mentioned

above in table 3.

Table 3: RMS Error for results for problem 3

Discretization #1; 16 Elements, 7 Internal Nodes

�r r r
3

r
4logr SAPT2 VAPT2 VAPT3 (r2 + c

2)1=2

q 0.17 0.054 0.060 0.058 0.055 0.054 0.057

u 0.030 0.0046 0.0027 0.0055 0.0026 0.0018 0.0050

Discretization #2; 16 Elements, 17 Internal Nodes

r r
3

r
4logr SAPT2 VAPT2 VAPT3 (r2 + c

2)1=2

q 0.11 0.054 0.055 0.052 0.054 0.054 0.055

u 0.011 0.00073 0.0010 0.0017 0.00058 0.00063 0.0025

Discretization #3; 32 Elements, 17 Internal Nodes

r r
3

r
4logr SAPT2 VAPT2 VAPT3 (r2 + c

2)1=2

q 0.11 0.013 0.013 0.019 0.011 0.011 0.015

u 0.011 0.00071 0.0010 0.0017 0.00056 0.00062 0.0014

It will be immediately noticed that there has been a reduction of accuracy of an order of

magnitude in relation to the results for the previous problem. Results for q on the boundary

are not acceptable for any of the f , results on the interior are acceptable for r3 and the VAPT

functions on mesh #3. The Multiquadric does not produce the same accuracy as in the previous

two problems. However in the analysis of convective type problems, one is not normally interested

in q on the boundary, it is the u result that is of more importance. Reasonable results for u at

internal points are produces by r3 and the VAPT Hybrid functions on meshes #2 and #3.

3.5 Problem 4: a non linear case

Here the problem considered is that of eq. (9)

r
2u = �u

@u

@x
(9)

The same geometry as in problems 1-3 is considered. A boundary condition u = 2

x
is imposed

on � which is a particular solution to eq. (9) from which q may easily be calculated. The origin is



moved to the point (-4,0) in �g. 1 to avoid the singularity at x = 0. The same discretizations are

considered as in previous examples on this geometry. RMS errors for q and u are given in table 4

for the meshes considered. Convergence was obtained in 5 iterations.

Table 4: RMS Error for results for Problem 4

Discretization #1; 16 Elements, 7 Internal Nodes

�r r r3 r4logr SAPT2 VAPT2 VAPT3

q 0.0069 0.0048 0.0088 0.0046 0.0044 0.0040

u 0.0015 0.00019 0.00061 0.00024 0.00019 0.00011

Discretization #2; 16 Elements, 17 Internal Nodes

r r3 r4logr SAPT2 VAPT2 VAPT3

q 0.0053 0.0039 0.0048 0.0048 0.0049 0.0039

u 0.00050 0.00014 0.00026 0.00010 0.00006 0.00005

Discretization #3; 32 Elements, 17 Internal Nodes

r r3 r4logr SAPT2 VAPT2 VAPT3

q 0.0045 0.0016 0.0027 0.0011 0.0012 0.00082

u 0.00052 0.00014 0.00026 0.00010 0.00004 0.00004

Considering table 4 it may be noticed that the accuracy for the non-linear problem is similar

to that of the problem without derivatives (problem 2), probably due to the iterative process used

to obtain the solution. The smallest error in the case of all three meshes is that of the Hybrid

function, VAPT3. Also, excluding r, the di�erence between the error results for the di�erent f

functions is not that great.

CONCLUSIONS

In considering which f function should be used for a given problem the most important factor

to take into account is the nature of the domain integral to be taken to the boundary:

In the case of known functions the problem can be accurately solved using the Multiquadric,

or an appropriate Hybrid function, in the latter case the results converge as the mesh is re�ned,

and for augmentation which includes the body force term, internal nodes are necessary only to

guarantee the invertability of the F matrix. This type of problem may also be solved accurately

using the Particular Solution method. In the case of the Multiquadric, a prior optimization study

is necessary to determine the best value of the shape parameter.

In the case of unknown functions without derivatives the multiquadric can be used if a value

of the shape parameter can be determined, the optimization cannot be carried out in the usual

way as the domain integral involves an unknown function. Otherwise linear augmented r3 and

r4logr are good options.

In the case of unknown functions with derivatives the choice for f falls on linear augmented

r3 and r4logr. r and the TPS should be avoided and VAPT3 may be considered. A high density

of internal nodes is advisable in this case to guarranttee a proper description of the body force

derivative over the domain.

In the case of non-linear functions once again, the choice for f falls on linear augmented r3

and r4logr. Once again r and the TPS should be avoided and VAPT3 may be considered.

The results presented here and other results obtained by the author but not included indicate



that the TPS function, in its low order version r2logr is inferior in performance to r3, and is

overrated in the literature, and that the higher order Thin Plate Splines, for example r4logr and

associated Hybrid functions are worthy of further study.
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