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Piezoelectric materials can be used in smart structures as sensors or actuators in
applications such as shape control, active damping and acoustic noise suppression. The design
of such systems requires accurate electromechanical models to simulate the interaction
between the structure and the piezoelectric elements. The recent literature addresses the
modeling of piezoelectric elements either bonded or embedded to several different types of
structures. The piezoelectric actuation of beams was treated in depth by Crawley and co-
workers (Crawley & Anderson, 1990; Crawley & de Luis, 1987). Several other formulations
were also presented for the modeling of plates (Ha et al., 1992; Batra et al., 1996; Ghosh &
Batra, 1995), cylindrical shells (Sonti & Jones, 1996), and general shells (Tzou & Yeh, 1996).

In composite laminates piezoelectric elements usually consist of patches symmetrically
bonded to the top and bottom surfaces. The voltages applied to the piezoelectric elements may
induce inplane, bending and localized shear deformations in the laminate (Chandra & Chopra,
1993). For symmetric laminates, applying the same in-phase voltage to both patches will
cause only inplane deformation, whereas equal out of phase voltage will cause pure bending.
Combined inplane and bending deformation may be induced when different voltages are



applied to each patch or when one of the elements is used as actuator and the other as sensor.
The same situation occurs if a single piezoelectric actuator is mounted on a surface.

The presence of inplane deformation may have a significant influence on the
mechanical behavior of plates, affecting the flexural stiffness and so the dynamic and stability
characteristics of isotropic (Brunelle & Robertson, 1974) and laminated plates (Yang &
Shieh, 1987). Rammerstorfer (1977) determined optimum fields of residual inplane stresses
that maximize the first natural frequency and buckling load of plates. Almeida and Hansen
(1997) showed that, with proper design, inplane thermal residual stresses from the curing
process can be tailored to significantly enhance the mechanical behavior by increasing the
critical buckling load of symmetric composite plates.

Piezoelectric actuators can be used with great versatility to induce favorable inplane
stresses with the purpose of improving the mechanical behavior of composite structures, since
the magnitude of the inplane induced stress can be effectively controlled by varying the
voltage applied to each actuator. The consideration of the stress stiffening effects on laminate
behavior requires the inclusion of geometric stiffness in the structural analysis.

The purpose of this work is to investigate the problem of free vibration behavior of
composite plates equipped with surface bonded piezoelectric elements, considering the stress
stiffening effect caused by the inplane induced deformation. With this in mind, nonlinear
strain-displacement relations are used to formulate a finite element model including the
geometric stiffness associated with the inplane piezoelectric induced stress. Examples
illustrate how induced stress stiffening influences the free vibration behavior of unconstrained
rectangular plates equipped with some suggestive configurations of piezoelectric patches.
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The free vibration analysis for laminated plates based on the Reissner--Mindlin theory,
including stress stiffening effects from the piezoelectric actuation is formulated. The solution
is subdivided in two parts. Firstly a linear static analysis of the structure subjected to induced
inplane piezoelectric stresses is performed, from where the stresses over the plate are
determined. After the stresses are known, a free-vibration analysis is carried out, however
considering the effects of the induced piezoelectric stress field in the geometric stiffness
matrix.
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Consider a composite laminated plate where each lamina is orthotropic and oriented at
an angle θ  with respect to the � axis. According to Mindlin plate hypothesis, the inplane
displacements �  and �  vary linearly through the plate thickness and the transverse
displacement �  is assumed constant through the plate thickness. Throughout this work, an
overline indicates a quantity at an arbitrary point %�����& in the plate and quantities without the
overline are defined on the ��� plane at the plate midsurface.

The following vectors of midsurface inplane strains, curvatures and out of plane shear
deformations, are defined respectively as
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where �, �, and � are the midsurface displacements along directions �, �, and �, respectively,
and ψ �[ and ψ �\ are rotations of the normal to the undeformed midsurface in the ��� and ���
planes respectively.

The constitutive relation including the piezoelectric material is assumed linear. It is also
assumed that the piezoelectric elements are thin and the electric field is parallel to �, that is,
{!}7= [ '� � '� � !�]. Moreover, it is assumed that !� is constant within each piezoelectric
element and is given approximately by !��(�)�*��S, where ) is the voltage at the piezoelectric
element and �S is its thickness. Hence, the constitutive equations for stresses becomes:
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where  }{σ  are the stresses;  }{ε  are the strains;  ][+  is the elasticity matrix; ���(��� are the
piezoelectric constants; and !� is the electric field vector.

We now introduce the following matrices,
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and the piezoelectric force and moment stress resultants along the thickness are respectively:
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where, {�S}
T= [ ����������' ] is the vector of piezoelectric constants. With these definitions the

potential energy becomes,
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For the sake of completeness the equations presented in this section include bending-
membrane coupling terms. However, due to the symmetry assumed with respect to the � axis,
the bending-membrane coupling matrix [3], as well as the vector of piezoelectric moment
stress resultant along the thickness, {�S}, will be identically zero.
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The next step in the formulation consists of a free vibration problem for a composite
plate subject to initial piezoelectrically induced stresses. The free vibration equations of
motion for this problem can be derived from Hamilton’s principle,
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where � is the kinetic energy, 6 is the strain energy and ∆ 5 is the change in the potential
energy due to the work of inplane stresses. The inplane elastic stresses due to piezoelectric
actuation, can be made available from the static stress analysis described in the last section,
Eqn. (2). Assuming symmetric laminates, the following inplane piezoelectric stress resultants
are defined:

[ ]

[ ] }{}{  }{  }{

}{}{  }{  }{

0

2/

2/

200

0

2/

2/

00

S

WK

WK

S

WK

WK

$ ���7

4���4

S

S

S

S

−==

−==

∫

∫
+

−−

+

−−

εσ

εσ

    (7)

Notice that the terms 7LM depending on the initial stresses are not zero even for the case
of symmetric laminates.

The work of these piezoelectric stresses through the plate shortening caused by bending
deflection leads to the following change in the bending potential energy (Dawe & Roufaeil,
1982):

( ) ������5
9

1

[\[\

1

\\

1

[[       000∫ ++−=∆ γσεσεσ     (8)

where  }{ 1ε  are the nonlinear or second order strain components. Considering only the terms
related to bending displacements, i.e., zeroing the midsurface inplane displacements, leads to
the following nonlinear strain components,
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Using Eqns. (7-9), the change of potential energy then becomes
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In order to complete the formulation the kinetic energy expression, must be written in
terms of the displacement field. Again, assuming symmetry with respect to the � axis, the
kinetic energy can be put in terms of the midsurface displacements and mass related
quantities,
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The mass related terms in Eqn (11) are defined by
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and they represent respectively the plate mass and moment of inertia per unit area.
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A finite element formulation was developed to solve both the inplane stress problem
and the free vibration problem described in the previous sections. A 16-node isoparametric bi-
cubic element using standard Lagrangian interpolation functions was implemented in a
FORTRAN code. This simple element does not suffer from shear locking, being therefore
applicable to thick as well as to thin laminates (Heppler & Hansen, 1986). No special
techniques such as reduced integration need to be applied for the integration of the stiffness
matrix; a regular 16-point Gaussian quadrature scheme is used. A shear correction factor of
5/6 is adopted for all laminates.

The element has five degrees of freedom per node (���������ψ �[�
��ψ �\) totalizing 80
displacement degrees of freedom. The displacements at an arbitrary point within the domain
of the �-th element are written in terms of element nodal displacements as {δ }7=[4] {δ }S,
where [4] is a 5×80 matrix of interpolation functions. Vector {δ }S contains the 80 element
nodal displacement degrees of freedom arranged by nodes.

The piezoelectric induced inplane stress problem may be solved from the stationary
value of Eqn (5), resulting:

[ ]   }{}{ 9: =δ   (13)



in terms of the system nodal displacements {δ }. The element stiffness matrix, [:], and
electric force vector, {9},may be found from Eqn. (5) using standard finite element
texhniques. The inplane stress resultants can then be calculated from Eqn. (7).

Applying Hamilton’s principle yields the equations of motion for the plate under free
vibration. Again, global matrices consistent with the boundary conditions of the problem can
then be generated using standard finite element techniques. The resulting equation can be cast
in the form of an eigenvalue problem in terms of the vector of system nodal displacements
{δ } as

[ ] [ ] [ ][ ]  {0}}{   2 =−+ δω �::
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  (14)

where [�], [:], and [:*] are the global mass, stiffness and geometric stiffness matrix for the
plate. The geometric stiffness matrix may be derived from Eqn. (10). In this equation, it can
be recognized that the first term corresponds to the classical Kirchhoff plate theory while the
second is related to Mindlin plate hypothesis.
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In order to illustrate the effect of the piezoelectrically induced stress stiffening on the
mechanical behavior of a composite plate, a graphite epoxy plate with PZT actuators is
considered. The plate is unconstrained and square with length equal to ;/'��. The basic
laminate for the analysis has four graphite/epoxy unidirectional tape layers, with the stacking
sequence ['*<']V where the 'R corresponds to the � global axis. The material properties used in
the analysis are listed in Table 1.

Table 1 - Physical properties of the materials used

Property PZT Graphite/Epoxy
Young´s moduli, !11  (GPa) 63.0 154.0
Young´s moduli, !22  (GPa) 63.0 11.13

Poisson´s ratio, ν12 0.3 0.304
Shear moduli, =12  (GPa) 24.2 6.98
Shear moduli, =13  (GPa) 24.2 6.98
Shear moduli, =23 (GPa) 24.2 3.36
Laminate thickness (mm) 0.254 0.150

Density, ρ  (Kg/m3) 7600 1560
PZT constants, e�� (N/V mm) 0.0229 
Breakdown voltage (V/mm) 1000 

Two different geometric arrangements of piezoelectric patches are considered in order
to assess the effects of the inplane induced stress resultants in the natural vibration
frequencies of a square plate. Besides inducing inplane stress, piezoelectric elements affect
the plate distribution of mass and stiffness. Symmetry with respect to the � axis exists, since
identical piezoelectric patches are symmetrically bonded to the top and bottom surfaces.
Figure 1 depicts the proposed configurations, which are similar to those used to investigate
the stress stiffening effects due to thermal residual stresses (Almeida & Hansen, 1997).



Figure 1 - Piezolectric actuator configurations

The first configuration, depicted in Fig. 1a, has two longitudinal actuators along the
edges of the plate. In a second configuration, Fig. 1b, the actuators are also longitudinal and
have the same dimensions of the first case but they are placed at the center of the plate.

Performing a punctual sweeping in the value of the voltage, distinct eigenvalue
problems were solved for each of the four mentioned plate configurations. Furthermore, the
voltage which is the same for all piezoelectric material patches obeys the appropriate material
breakdown voltage limits (0,-)). The results were used to plot charts of voltage versus the
natural frequency of vibration shown in the Figs. 2 and 3. In both cases presented the inplane
stress resultants are assumed to be proportional to the applied voltages. Therefore, previously
to the solution of the eigenvalue problems for a given configuration of PZT patches over a
given plate, only one linear static analysis was performed in order to calculate the induced
inplane stress distribution resulting from piezoelectric actuation.

Due to plate symmetry vibration modes are either symmetric or antisymmetric
respectively to the � and � plate axis, allowing the discretization of only one-fourth of the
plate with a uniform (-× -) rectangular mesh of 16 elements. Appropriate boundary conditions
were then applied to the nodes of the discretized plate, such that four different finite element
models were created. Model SS accounts for vibration modes that are symmetric with respect
to the � and � coordinate axes, while model AA represent modes which are antisymmetric
with respect to both axis. Model SA represents modal symmetry with respect to the � axis and
antisymmetry with respect to the � axis, while SA represents symmetry in � and antisymmetry
in �.
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The numerical results demonstrate that the natural vibration frequencies of a plate
equipped with two different configurations of piezoelectric patches are significantly
influenced by induced stress stiffening effects. In fact, plate behavior is rather complex, since
in general induced tension is not associated with stiffening nor induced compression is
associated with the softening of the four types of plates. Furthermore, it is apparent that the
configuration of the piezoelectric material patches is decisive in the vibration behavior
characteristics of the plates studied.
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(a) longitudinal actuators at the edges (b) longitudinal actuators at the center



Figure 2 shows the plots of natural frequency versus voltage for the first five modes for
the plate with two longitudinal actuators placed at the edges. The two fundamental natural
frequencies are very close in the neutral state ()R�(�'�)), but tend to separate from each other
with the decrease in voltage or increase beyond the value for which both frequencies become
the same. While the fundamental frequency (first SS mode) increases with tension stress the
second mode (first AA mode) has its frequency decreasing, such that the increase in tension
stress leads to the switch between the two modes. Notice that for higher positive or negative
values of voltage the plate aproaches its critical load as the fundamental frequencies tend to
zero. For the third (SS) and fourth (AS) modes the increase in induced compressive stress
tend to stiffen the plate, as is the case for the second mode (first AA mode). For the fifth mode
the natural frequency reaches a maximum for a voltage around -90V.

Figure 3 depicts the frequencies of a plate with two longitudinal actuators placed at the
center. Here the fundamental mode is less sensitive to changes in voltage and the frequency
reaches a maximum value for a voltage close to the neutral state. Similarly to the plate in Fig.
2, there is a switch in the fundamental modes, but now due to the increase of compressive
induced stress; the third and higher modes tend however to stiffen with tension. Comparing
Figs. 2 and 3 it is concluded that the stress stiffening effect of the piezoelectric inplane
stresses strongly depends, among several other factors, on the geometrical arrangement of the
actuators on the plate.
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A study of the stress stiffening effects on the free vibration behavior of composite plates
with piezoelectric actuators was conducted using a consistent finite element formulation based
on Reissner-Mindlin plate theory. The numerical results presented for the case of
unconstrained plates show that the piezoelectric induced inplane stress effect may be
significant for the free vibration behavior. The relative importance of the stress stiffening
effect depends on the magnitude of the in-phase actuation and geometric arrangement of the
piezoelectric actuators; boundary conditions; geometry of the problem; and material
properties.

Only two simple geometric configurations of piezoelectric patches were tested in the
examples; obviously several other configurations would be possible, but our purpose was to
illustrate the stress stiffening effects using a set of simple examples. The same thinking
guided us towards using the same actuation voltage for the piezoelectric elements, although it
would be a fairly simple matter to exploit the use of several different voltages for the
piezoelectric patches. In more realistic applications the configuration of the piezoelectric
patches as well as the voltages may be tailored to achieve a certain predefined performance
criterion. It seems natural that structural optimization would be a powerful tool to fit very
adequately the design of smart systems considering inplane induced stress stiffening, since
plate behavior seems difficult to be captured through intuition only.

The ability of controlling the plate stiffness has potentially interesting applications, one
of them being the tuning of the frequencies of vibration of smart composite structures.
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Figure 2 - Natural frequency as a function of voltage for longitudinal actuators at the edges

Figure 3 - Natural frequency as a function of voltage for actuators at the center

-150 -100 -50 0 50

0

10

20

30

40

50

60

V  (V)

f (
H

z)

 1st - SS 

1st - AA

2nd - SS

1st - AS

1st - SA

0

-240 -160 -80 0 80 160 240

0

10

20

30

40

50

60

V  (V)

f (
H

z)

1st - SS

1st - AA

2nd - SS

1st - AS

1st -SA

0



�������	��

Almeida, S. F. M. & Hansen, J. S., 1997, Enhanced Elastic Buckling Loads of Composite
Plates with Tailored Thermal Residual Stresses, Journal of Applied Mechanics, vol. 64, n.
4, pp. 772-780.

Batra R. C., Liang, X. Q. and Yang, J. S., 1996, Shape Control of Vibrating Simply Supported
Rectangular Plates, AIAA Journal, vol. 34, n. 1, pp. 116-122.

Brunelle, E. J. & Robertson, S. R., 1974, Initially Stressed Mindlin Plates, AIAA Journal, vol.
12, n. 8, pp. 1036-1045.

Chandra, R. & Chopra, I., 1993, Structural Modeling of Composite Beams with Induced-
Strain Actuators, AIAA Journal, vol. 31, n. 9, pp. 1692-1701.

Crawley, E. F. & Anderson, E. H., 1990, Detailed Models of Piezoceramic Actuation of
beams, Journal of Intelligent Material Systems and Structures, vol. 1, n. 1, pp. 4-25.

Crawley, E. F. & de Luis, J., 1987, Use of the Piezoelectric Actuators as Elements of
Intelligent Structures, AIAA Journal, vol. 25, n. 10, pp. 1373-1385.

Dawe, D. J. & Roufaeil, O. L., 1982, Buckling of rectangular Mindlin Plates, Computers and
Structures, vol. 15, n. 4, pp. 461-471.

Ghosh, K. & Batra, R. C., 1995, Shape Control of Plates Using Piezoceramic Elements,
AIAA Journal, vol. 33, n. 7, pp. 1354-1357.

Ha, S. K., Keilers, C. and Chang, F. K., 1992, Finite Element Analysis of Composite
Structures Containing Distributed Piezoceramic Sensors and Actuators, AIAA Journal,
vol. 30, n. 3, pp. 772-780.

Heppler, G. R. & Hansen, J. S., 1986, A Mindlin Element for Thick and Deep Shells,
Computer Methods in Applied Mechanics and Engineering, vol. 54, n. 1, pp. 21-47.

Rammerstorfer, F. G., 1977, Increase of the First Natural Frequency and Buckling Load of
Plates by Optimal Fields of Initial Stresses, Acta Mechanica, vol. 27, n. 1-4, pp. 217-238.

Sonti, V. R. & Jones, J. D., 1996, Dynamic Effects Of Piezoactuators on the Cylindrical Shell
Response, AIAA Journal, vol. 34, n. 4, pp. 795-801.

Tzou, H. S. & Ye R., 1996, Analysis of Piezoelastic Structures with Laminated Piezoelectric
Triangle Shell Elements, AIAA Journal, vol. 34, n. 1, pp. 110-115.

Yang, I. H. & Shieh, J. A., 1987, Vibrations of Initially Stressed Thick Rectangular
Orthotropic Plates, Journal of Sound and Vibration, vol. 119, n. 3, pp. 545-558.


