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Abstract. A Boundary Element formulation to analyze the dynamic response of elastic
axisymmetric bodies is presented. In the formulation the 3D kernels were transformed into
axisymmetric kernels by a coordinate change and an integration over the azimuthal direction.
The dynamic singular kernels are regularized subtracting the corresponding static kernels.
The static singular kernels are solved by the rigid body argument. The BE implementation is
validated by determining the response of a cylinder with known modal data, i.e.
eigenfrequencies and eigenmodes. The methodology is also applied to analyze the response of
an acoustic horn.
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1.     INTRODUCTION

In the present article the dynamic response of axisymmetric linear elastic bodies is
analyzed using an implementation of the Boundary Element Method (BEM). The main
advantage of the BEM over the Domain Methods (Finite Difference and Finite Element
Methods) is the reduction by one in the order of the discretization process. In the 3D BEM
formulation of non-axisymmetric problems it is necessary to discretize the domain surface
[Kane, 1994; Dominguez, 1993]. In the case of axisymmetric bodies only the line generating
the revolution surface needs to be discretized, leading to a great reduction in pre-processing
time [Becker, 1992].

The axisymmetric implementation of the BEM is accomplished integrating the kernels of
the dynamic 3D fundamental solutions [Dominguez, 1993] once over the azimuthal angle and
in the sequence over the line generating the revolution surface. The displacement and traction
kernels of the 3D fundamental solutions present, respectively, a weak (integrable) singularity
and a strong singularity, which must be integrated in the Cauchy Principal Value (CPV) sense.
In the present formulation the weak singular kernels are transformed into an equivalent elliptic
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integrals, and evaluated numerically. The strong singular integrals are regularized by means of
the static 3D traction kernels. The corresponding axisymmetric static problem is solved using
a rigid body argument as well as a particular solution for stresses [Becker, 1992; Carrion,
1999].

There is good physical and numerical motivation for an Axisymmetric BEM
implementation. Vibrating axisymmetric bodies are being widely used in ultrasonic wave
generating devices. The typical device can be pictured in Figure 1. It consists of an active
piezoelectric ceramic element connected to a passive axisymmetric elastic concentrator. The
role of the concentrator is to amplify the vibration amplitude induced by the piezoelectric
ceramic, generating thus an ultrasonic field at the free extremity. The ultrasonic transducers
are acoustically very inefficient. One of the reasons lies in the fact that not only the free
extremity generates an acoustic field, but the whole vibrating axisymmetric surface also
emanates acoustic waves. A shape optimizing process may be applied to the transducer to
generate an acoustically more effective concentrator. The shape changes in the BE mesh are
much smaller than the FEM counterpart, leading to a faster shape optimization process.

In this article, Frequency Response Functions (FRF) of axisymmetric bodies with known
analytical eigenfrequencies and eigenmodes are used to validate the implementation.
Furthermore the eigenfrequencies of a typical acoustic concentrator with arbitrary
axisymmetric geometry are obtained by the peaks of the system FRF. At these peaks
operational modes are recovered and displayed.

concentrator
(passive element)

ceramic
(active element)

Figure 1 – Ultrasonic transducer

2.     GOVERNING DIFFERENTIAL EQUATIONS

The dynamic behavior of the linear, elastic homogeneous and isotropic body is governed
by Navier’s equations [Graff, 1975; Dominguez, 1993]. In terms of the continuum
displacements components ui these equations are:

( ) iiji,jjj,i ubuu ��ρµλµ =+++ (1)

In eqn (1) bi is the i-th component of the body force vector, λ  and µ  are Lame’s
constants and ρ  is the continuum density. The dots over the displacement component means
derivation with respect to time. Considering the stationary case, ( ) ( ) ( )tiexpxux,tu ω=  with
circular frequency ω , eqn (1) may be written as:
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( ) i
2

iji,jjj,i ubuu ρωµλµ −=+++ (2)

Introducing the continuum dilatation and shear wave velocities, respectively,
Cp

2=(λ +2µ )/ρ   and Cs
2=µ /ρ  , eqn (2) may be recast into [Graff, 1975; Dominguez,

1993]:

( ) iijijjji ubuCsCpuCs 2
,

22
,

2 ω−=+−+ (3)

The solution of eqn (3) for axisymmetric bodies subjected to prescribed boundary
conditions is the aim of the present article. The equation governing the corresponding static
problem is obtained setting the inertial forces equal to zero, (ρ  ω 2 ui = 0).

3.     BOUNDARY INTEGRAL EQUATIONS - BIE

3.1.   The 3D equations

Using Betti’s reciprocity theorem or a standard Weighted Residual procedure the
differential eqn (3) can be transformed into an integral equation over the boundary S of the 3D
domain. Neglecting the body forces (bi=0), the 3D equations can be written as [Dominguez,
1993]:

( ) ( ) ( )∫∫ −=
S iijS iijjij xdSxuxtxdSxtxuuc )(),()(),( ** ξξξ (4)

In eqn (4) the displacements and tractions of problem being solved are represented by ui

and ti, respectively. The collocation point is ξ  and the field point is x. The elements of cij are
called integration free terms. Equation (4) describes both the elastostatic and the
elastodynamic problem, according to the fundamental solution employed. If the kernels of the
static fundamental solution uij

*=u*
ijSTA, tij

*=t*
ijSTA are applied, eqn (4) describes the static

problem [Becker, 1992]. If the stationary dynamic kernels uij
*=u*

ijDYN, tij
*=t*

ijDYN are
considered, the equation describes the stationary dynamic problem [Dominguez, 1993]. It is
important to mention that the static and dynamic 3D displacement and traction kernels present
singularities of the order O(1/r) and O(1/r2), respectively.

3.2.   The axisymmetric equations

To synthesize the Axisymmetric BIE from eqn (4), a coordinate transformation from the
cartesian system (3D) to a cylindrical system (AXI) is performed. Figure 2 shows the axial z,
radial r and azimuthal θ  directions of the cylindrical coordinate system.

The surface integration over the 3D boundary S in eqn (4) is divided into an integration
over the azimuthal direction θ and an integration over the line generation the revolution
surface Γ. The integration over θ will render the axisymmetric kernels u*

ijAXI, t
*

ijAXI that must
be integrated over Γ [Emperador, Dominguez, 1989; Wang, Banerjee, 1990].

( ) ),(),(),(]),,([),( *** zrdzruzrddzruxdSxu ijAXIijS ij Γ=Γ= ∫∫ ∫∫
ΓΓ

θθξ
θ

(5)
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Figure 2: Definitions for the cylindrical coordinate system

After the integration is performed the equations in the rz plane are uncoupled from the θ
direction, resulting in a 2D system of integral equations [Becker, 1992]:
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In eqn (6) the collocation point ξ  and the field point x have, respectively, the coordinates
( ) ( ) ( )( )ξξθξ Z, ,R  and ( ) ( ) ( )( )xz  ,x  ,xr . This integral equation is also valid for the static and

for the stationary dynamic case. The integral equation (6) can now be discretized as in the
standard Boundary Element procedure. The only difficulties to be overcome are the element
integrations over the weak and strong singular kernels.

3.3.   Integration over singular elements

Static case, weak singularities. The displacement kernels ( )z,rj,iuij =  in eqn (6) present

weak singularities. These kernels can be rearranged, so that the (weak) singular integrals are
represented as elliptical integrals of the first and second kind, K(m,π /2) and E(m,π /2),
which can be evaluated by Gaussian quadrature [Becker, 1992; Carrion, 1999]. In full extend,
the static axisymmetric kernels are:
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where:

( )νµπ −
=

116

1
A

2
(8a)

( ) ( )[ ] 2
1

22 )x(z)(Z)x(r)(RC −++= ξξ (8b)

( ) ( )( ) ( ) ( )( )22 xzZxrRD −+−= ξξ (8c)

Static case, strong singularities. The strong singular static traction kernels in equation
(6) are integrated using the rigid body argument for the axial z direction and the solution of a
particular state of stress for the radial r direction [Becker, 1992; Carrion, 1999].

Dynamic case, weak and strong singularities. It is not possible to apply the rigid body
argument to the strong singular dynamic traction kernels. But the dynamic kernels present the
same order of singularity of the static kernels [Dominguez, 1993]. So it is possible to
regularize the strong integrals, subtracting the static kernels from the dynamic ones. This
strategy will be applied to the weak and strong singular dynamic kernels, as described below.
Assuming the following convention for the indexes:

3D  = tridimensional problem in cartesian coordinates
AXI = axisymmetric problem in cylindrical coordinates
STA = static problem
DYN = dynamic problem
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Equation (4) can be written for the dynamic (ω ) case as:

( ) { } ( )∫ −=
S i

*
)DYN,D3(iji

*
)DYN,D3(ijjij xdSuttu,uc ωξ (9)

Subtracting and adding the 3D static kernels from eqn (9) results:

( ) ( ) ( ) ( )−+−= ∫∫∫ S i
*

)STA,D3(ijS i
*

)STA,D3(ijS i
*

)DYN,D3(ijjij xdStuxdStuxdStu,uc ωξ

( ) ( ) ( )∫∫∫ +−
S i

*
)STA,D3(ijS i

*
)STA,D3(ijS i

*
)DYN,D3(ij xdSutxdSutxdSut (10)

If equation (10) is transformed into an axisymmetric problem, it may be written as:

( ) [ ] ( ) ( )−+−= ∫ ∫∫ ∫ Γ
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or still:

( ) [ ] ( ) ( )−+−= ∫∫ ∫ ΓΓ
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ΓΓθωξ xdtuxddtuu,uc i
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The integrals in eqn (12) containing the difference of the dynamic and static kernels are
no longer singular and may be evaluated by standard quadrature methods. The values of the
integrals over the singular static kernels are obtained by the rigid body procedure mentioned in
the previous section.

4.     NUMERICAL EXAMPLES

4.1.   Validation – static problem

Since the solution of the dynamic problem makes use of the static solution to regularize
the singular integrals, the static implementation will be validated. The example is a cylinder
fixed at one end and loaded uniformly at the other free extremity. The ratio of the diameter to
the length is 1/10 (see Figure 3). This axisymmetric problem was solved with constant
elements. All integrations were performed with 4 Gauss points. Table 1, shows the normalized
displacement obtained at the point (r = 0.05, z = 10.0) for three distinct discretizations. An
analytical solution is also presented. The solution is very good for the 32 elements case,
indicating that the static implementation could be considered correct.

Table 1: Normalized static displacement for the cylinder
ANALYTICAL BEM-AXI

(8 elements)
BEM-AXI

(16 elements)
BEM-AXI

(32 elements)
1.00 0.53 0.95 1.00

Relative error 47% 5% 0%
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Figure 3: A free-fixed cylinder subjected to a uniform loading.

4.2.   Validation – dynamic problem

To validate the dynamic implementation, the Frequency Response Function (FRF) of the
cylinder shown in Figure 3 is determined. Figure 4a shows the normalized FRF measured at
the same point where the static displacement was determined. The used mesh has 32
axisymmetric elements. The frequencies were normalized with respect to the first
eigenfrequency of the analytical solution. The FRF was obtained for 256 frequency points.
The eigenfrequencies for the BEM-AXI implementation were obtained from the local maxima
of the FRF. Table 2 shows the values of the normalized eigenfrequencies obtained from the
FRF peaks and compared to the analytical solution. At the frequencies corresponding to the
FRF peaks the operational modes were determined. Figures 4b, 4c and 4d show the first three
operational modes of the cylinder obtained from the BEM-AXI implementation, compared to
the analytical solution. It can be seen that there is a very good agreement between numerical
and analytical solutions, leading to the conclusion that the present dynamic axisymmetric
formulation and implementation is correct.
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Figure 4: Dynamic response of the cylinder

Table 2: Normalized eigenfrequencies for the cylinder
Freq. N. 1ω 3ω 5ω

Analytical 1.00 3.00 5.00
BEM-AXI

16 elements
0.99 2.99 5.00

Relative error 1% 1% 0%
BEM-AXI

32 elements
0.99 2.99 5.00

Relative error 1% 1% 0%
BEM-AXI

64 elements
0.99 2.99 5.00

Relative error 1% 1% 0%

4.3.   Dynamic response of an acoustic horn

The methodology developed and validated in the previous sections is applied to a typical
acoustic horn, used in ultrasonic transducers [Eisner, 1967]. Figure 6 shows the investigated
horn. It is an axisymmetric body with a cross sectional area varying according to the law
d(z)=d(0)[1-(z/L)0.5]+d(L)(z/L)0.5. The horn is considered as a free-free element. The
excitation is applied at the bottom and the displacement is determined at the top.



9

r

z

�zz

d(0)

L

d(L)

Figure 5: Definitions for the acoustic horn.
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Figure 6: The first 3 operational eigenmodes of the acoustic horn.
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The FRF obtained for the free-free horn is given in Figure 6. It can be seen that at low
frequencies the displacement is very large, corresponding to the rigid body translation. Figure
6a show three peaks in the FRF corresponding to 3 eigenfrequencies. The operational
eigenmodes associated to the 3 FRF peaks can be seen in Figures 6b, 6c e 6d.

The transducer operational eigenmodes can be used to determine the position of the nodes
where the transducer may be fixed. Fixing the transducer at the node of one eigenmode should
uncouple the transducer dynamic response from the dynamic behavior of the fixing support.

5.     CONCLUDING REMARKS

In the present article a numerical tool to analyze the dynamic response of axisymmetric
elastic bodies based on the Boundary Element Methodology is presented. The axisymmetric
formulation is discussed in some extent. The procedures to integrate weak and strong singular
elements are outlined. The methodology was validated by means of comparisons with
analytical solutions. The method is used, exemplarily, to obtain modal data, eigenfrequencies
and eigenmodes of an acoustic horn.
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