
DESIGN OF FLEXTENSIONAL PIEZOELECTRIC ACTUATORS USING
TOPOLOGY OPTIMIZATION

Emı́lio C. N. Silva
Department of Mechanical Engineering,
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Abstract. Flextensional piezoelectric actuators consist of a piezoceramic (or a stack of piezo-
ceramics) connected to a flexible mechanical structure that converts and amplifies the output
displacement of the piezoceramic. The actuator performance depends on the distribution of
stiffness and flexibility in the coupling structure domain, which is related to the coupling struc-
ture topology. By designing other types of coupling structures connected to the piezoceramic,
we can obtain novel types of flextensional transducers with enhanced performance. In this work,
we propose a method for designing flextensional actuators by applying topology optimization
technique based on the homogenization design method, which consists of finding the optimal
material distribution in a perforated design domain with infinite microscale voids. The problem
is posed as the design of a flexible structure coupled to the piezoceramic that maximizes the
output displacements in a specified direction and point of the domain. Since complex topolo-
gies are expected, the finite element method is used for transducer modeling. Only static and
low-frequency applications are considered. As a result, designs of flextensional actuators are
presented.

Keywords: Topology optimization, Homogenization design method, Flextensional actuators,
Piezoelectric actuators, Finite element

1. INTRODUCTION

Flextensional actuators consist of a piezoceramic (or a stack of piezoceramics) connected
to a flexible mechanical structure that converts and amplifies the output displacement of the
piezoceramic. A well–known type of flextensional actuator is the “moonie” transducer, which
consists of a piezoceramic disk sandwiched between two metal endcaps (Xuet al., 1991). The
performance of the flextensional actuator is measured in terms of output displacement and gen-
erative (or “blocking”) force (Doganet al., 1997), that is, the maximum force supported by the
transducer without deforming, for a certain applied voltage.



Flextensional actuators have been developed by using simple analytical models and experi-
mental techniques (Xuet al., 1991 e Doganet al., 1994), and the finite element method (Dogan
et al., 1997). However, the design is limited to the optimization of some dimension of a spe-
cific topology chosen for the coupling structure. These studies showed that the performance
depends on the distribution of stiffness and flexibility in the coupling structure domain, which
is related to the coupling structure topology. Therefore, the design of the coupling structure
can be achieved by using topology optimization. By designing other types of flexible structures
connected to the piezoceramic, we can obtain novel types of flextensional actuators that produce
high output displacements (or generative forces) in different directions, according to a specific
application of the actuator.

Based on this idea, in this work, we propose a method for designing flextensional actuators
by applying topology optimization techniques. The problem is posed as the design of a flexible
structure coupled to the piezoceramic that maximizes the output displacement and generative
force in some specified direction. Only static and low-frequency applications (inertia effects
are negligible) are considered. The topology optimization method (Bendsøe, 1995) applied is
based on the homogenization design method developed by Bendsøe and Kikuchi (1988). FEM
is applied to the structural analysis in the optimization procedure (Lerch, 1990). Even though
two-dimensional (plane strain) topologies of flextensional actuators are presented to illustrate
the implementation, the method can be extended to three-dimensional topologies.

2. TOPOLOGY OPTIMIZATION PROCEDURE

Topology optimization is a computational design method that combines optimization algo-
rithms (usually sequential linear programming) and finite element method to find the optimum
topology of mechanical parts considering a desired objective function and some constraints.
Essentially, it allows us to design structures with holes optimally placed to maximize (or min-
imize) a defined structure cost function. It is a method more general than the parametric and
shape optimization methods, where only some dimensions or the shape of the structure are op-
timized, respectively. The main advantage of topology optimization is that allows us to find
new holes in the structure and, therefore, the weight reduction obtained is much larger than the
reduction obtained using the other methods. Topology optimization has been widely applied
in the automotive and aeronautic industries to design structures and mechanical elements with
high stiffness and low weight (Bendsøe, 1995). The most general topology optimization for-
mulation is based on the so-called homogenization design method developed by Bendsøe and
Kikuchi (1988).

2.1 Homogenization design method

The topology optimization method applied is based on two main concepts (Bendsøe and
Kikuchi, 1988): the extended fixed domain method and the relaxation of the design domain.

The extended domain is a large fixed domain bounded by supports and applied loads that
must contain the unknown structure. The objective of topology optimization is to find the
optimal distribution of material properties in this domain that maximizes some structure cost
function. Therefore, the finite element model does not change during the optimization process
which makes easy the calculation of the derivatives of any function defined over the extended
domain.

The second concept is related to the relaxation of the design domain. A material model that
relates the properties in each point of the domain to some design variable must be defined, and
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Figure 1: Microstructure used for relaxation of the optimization problem.

this model must allow materials with intermediate properties and not only zero or full material.
This concept is called relaxation of the design domain.

A high relaxation of the optimization problem can be obtained using a material model based
on the microstructure described in the Fig. 1 which is defined in each point of the domain. This
microstructure was proposed by Bendsøe and Kikuchi (1988) and consists of a unit cell with
a rectangular hole inside whose dimensions are defined by the design variablesa andb, and
the orientation�. Therefore, in each point of the domain there is a composite material defined
by the periodic repetition of the microstructure corresponding to that point. The composite
material in each point of the domain can vary from void (a = b = 1 or a maximum value) to
full material (a = b = 0), also assuming intermediate materials. In this sense, the problem
consists of optimizing the material distribution in a perforated domain with infinite microscale
voids. The homogenized (or effective) elasticity properties of this composite material in each
point of the design domain is obtained using the homogenization method described by Guedes
and Kikuchi (1990).

When the unit cell hole is rotated by the angle�, as shown in Fig. 1, the new homogenized
elasticity tensorcG is given by the following equation:

c
G
= R(�)

t
c
H
R(�) (1)

whereR is the rotation matrix defined by

R(�) =

"
cos� �sin�

sin� cos�

#
(2)

The gradients of the elastic properties in relation toa andb are necessary for the optimiza-
tion method. They are calculated by building a table that contains the values of homogenized
properties for combinations of discrete values ofa andb. The orientation� is determined during
the optimization procedure by considering the local principal stresses direction in each point of
the domain (Pedersen, 1989).

2.2 Formulation of optimization problem

The design of flextensional actuators requires two different objective functions (Silva, 1998):
mean transduction andmean compliance. Mean transduction is related to the electromechanical
conversion between two regions,�d1 (electrical one) and�t2 (mechanical one) (see Fig. 2), of
the design domain. The larger this function, the larger the displacement generated in a certain
direction and in region�t2 due to an input electrical charge in region�d1 . The concept of mean
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Figure 2: Load cases for calculation of mean transduction (case 1) and mean compliance (case
2).

transduction is obtained by extending the reciprocal theorem in elasticity to the piezoelectric
medium. The mean transduction is calculated considering two load cases described in case1 of
Fig. 2. Therefore, the maximization of the output displacement is obtained by maximizing the
mean transduction which is given by the expression (Silva, 1998):

L2(u1; �1) = Lt(t2;u1) = Ld(d1; �2) = A(u1;u2) +

+ B(�1;u2) +B(�2;u1)� C(�1; �2) =

= B(�2;u1)� C(�1; �2) (3)

where the following operators were defined to make the notation compact:

A(u; v) =

Z



"(u)
t
c
E
"(v)d
 B(�; v) =

Z



(r�)
t
e
t
"(v)d


C(�; ') =

Z



(r�)
t
�
S
r'd
 Lt(ti; vi) =

Z
�
ti

ti � vid�

Ld(di; 'i) =

Z
�di

di'id� (4)

and
 is the fixed domain considered for design (it can also contain non-piezoelectric materials),
r is the gradient operator,"(:) is the strain operator,ti is a traction vector,di is the surface
electrical charge, andcE, e, and �S are the elastic, piezoelectric, and dielectric properties,
respectively, of the medium.u andv are displacements, and� and' are electric potentials.

If only the electromechanical function is considered, a structure with no stiffness at all,
may be obtained. Therefore, a structural function must also be considered to provide sufficient
stiffness in the coupling structure between the regions�t2

and�d1 . The coupling structure
stiffness is also related to the generative force. The larger the stiffness, the larger the generative
force. This stiffness can be obtained by minimizing the mean compliance (L3(u3; �3)) in the
contact region actuator/body, which is given by the expression (Silva, 1998):

L3(u3; �3) =

Z
�t2

t3 � u3d� = A(u3;u3) + 2B(�3;u3) +

�C(�3; �3) = A(u3;u3) +B(�3;u3) (5)

To combine both optimization problems the following objective function is proposed:

F (x) = w � ln (L2(u1; �1))� (1� w) ln(L3(u3; �3)) (6)



where0 � w � 1 is a weight coefficient. This objective function allows us to control the
contributions of the mean transduction (Eq. 3) and the mean compliance (Eq. 5) in the design.
Therefore, the new optimization problem is stated as:

Maximize : F (x)

a; b, and�
subject to : t3 = �t2 (�t3 = �t2)

A(u1;v1) +B(�1;v1) = 0

B('1;u1)� C(�1; '1) = Ld(d1; '1)

for u1; �1 2 Va and8v1; 8'1 2 Va

A(u2;v2) +B(�2;v2) = Lt(t2;v2)

B('2;u2)� C(�2; '2) = 0

for u2; �2 2 Va and8v2; 8'2 2 Va

A(u3;v3) +B(�3;v3) = Lt(t3;v3)

B('3;u3)� C(�3; '3) = 0

for u3; �3 2 Vb and8v3; 8'3 2 Vb

0 � a � asup < 1

0 � b � bsup < 1

�(a; b) =
R
S(1� ab)dS � �S � 0

where:
Va = fv = viei; ' : vi; ' 2 H

1
(
) with v = 0 on�u and' = 0 on��, i = 1 or

3g

Vb = fv = viei; ' : vi; ' 2 H
1
(
) with v = 0 on�u, and' = 0 on�� and�d1 ,

i = 1 or 3g
S is the design domain
 without including the piezoceramic,� is the volume of this design
domain, and�S is an upper bound volume constraint to control the maximum amount of mate-
rial used to build the coupling structure. The indexi assumes value1 or 3 because the problem
is considered in the plane1-3. The piezoceramic is polarized in the #3 direction.

The above optimization problem was defined in a continuous form, however since the do-
main is discretized in finite elements, the above definitions must be substituted by their equiv-
alent discretized ones using FEM. In addition, the variablesa, b, and� which theoretically are
a continuous function ofx, became sets of continuous design variablesan, bn, and�n defined
for then finite element subdomain in the numerical problem. The upper boundsasup andbsup
specified fora andb, respectively, are necessary to avoid numerical problems such as singular-
ity of the stiffness matrix in the finite element formulation. In this work, the upper boundsasup

andbsup were chosen to be0:995. Numerically, regions witha = b = 0:995 have practically no
structural significance and can be considered void regions.

Considering the discussion above, the final objective function is composed of three load
cases described in Fig. 2. These load cases are solved separately, and their solution is used in
the mean transduction and mean compliance calculations.

2.3 Numerical implementation

The optimization problem is solved using Sequential Linear Programming (SLP) which
consists of the sequential solution of linearized problems defined by writing a Taylor series
expansion for the objective and constraint functions around the current design pointsan andbn
in each iteration step.�n is obtained by considering the local principal stresses direction in each
finite element after each optimization step. The sensitivities of the objective function necessary
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Figure 3: Flow chart of the optimization procedure.

for the linearization of the problem were derived by Silva (1998). In each iteration, moving
limits are defined for the design variables. After optimization, a new set of design variablesan

andbn is obtained and updated in the design domain. A flow chart of the optimization algorithm
describing the steps involved is shown in Fig. 3.

3. RESULTS

Two examples will be presented to illustrate the design of flextensional actuators using the
proposed method. The design domains used for the examples below are described in Fig. 4a and
b (40� 20 mesh - 800 finite elements). They consist of a domain of piezoceramic that remains
unchanged during the optimization and a domain of brass where the optimization is conducted.
The mechanical and electrical boundary conditions for both domains are described in the same
figures. Electrical degrees of freedom are considered only in the ceramic domain. For each
example, the correspondent interpretation of the topology is obtained through a threshold of the
topology optimization image.

Table 1 describes the piezoelectric material properties used in the simulations. The Young’s
modulus and Poisson’s ratio of the brass are equal to106 GPa and0:3, respectively. Two-
dimensional elements under plane strain assumption are used in the finite element analysis. For
all these examples, the total volume constraint of the material�S is considered to be30% of
the volume of the whole domain
 without piezoceramic (domainS). The initial value of the
microscopic design variablesan andbn is 0:9, and that of� is 0:0 in all elements. The amount of
electrical charge applied to the piezoceramic electrode is 4�C=m

2. Any value can be applied
since the problem is linear.

3.1 Example 1

The optimization problem is defined as the maximization of the deflection at pointA in
the direction shown when electrical chargesd1 are applied to the piezoceramic at electrode
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Figure 4: Design domain considered.

Table 1: Material Properties of PZT5.

cE
11

(1010 N/m2) 12.1 e13 (C/m2) -5.4
cE
12

(1010 N/m2) 7.54 e33 (C/m2) 15.8
cE
13

(1010 N/m2) 7.52 e15 (C/m2) 12.3
cE
33

(1010 N/m2) 11.1 �
S
11
=�0 1650

cE
44

(1010 N/m2) 2.30 �
S
33
=�0 1700

cE
66

(1010 N/m2) 2.10

�d1 (see Fig. 4b), while the mean compliance at pointA is to be minimized since the actuator
is supposed to have contact with a body at pointA. The coefficientw was considered equal
to 0:5. Figure 5a shows the topology optimization result. Figure 5b shows the image of the
final actuator obtained by reflecting the interpreted image of Fig. 5a to the symmetry axis. The
corresponding deformed shape obtained using FEM is described in Fig. 5c.

3.2 Example 2

The objective is to maximize the deflecton at pointB in the direction shown when elec-
trical chargesd1 are applied to the piezoceramic at electrode�d1 (see Fig. 4b), while the mean
compliance at pointB is also to be minimized for the reason stated before. The coefficientw

was considered equal to0:8. The topology optimization result for this different type of actuator
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Figure 5: a) Topology result (w = 0:5); b) Final actuator image; c) Corresponding deformed
structure obtained using FEM.
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Figure 6: a) Topology result (w = 0:8); b) Final actuator image; c) Corresponding deformed
structure obtained using FEM.

is presented in Fig. 6a. Figure 6b shows the image of the final actuator obtained by reflect-
ing Fig. 6a to both symmetry axes. The corresponding deformed shape obtained using FEM is
shown in Fig. 6c. Due to the output displacement of the coupling structure, this result could be
used to design a low-frequency sonar with high directivity, for example.

4. CONCLUSIONS

A method for designing flextensional piezoelectric actuators for static and low-frequency
applications has been proposed. This method is based upon topology optimization using the ho-
mogenization design method. The method consists of designing a flexible structure (coupling
structure) connected to a piezoceramic (or stack of piezoceramics) that amplifies and converts
the output piezoceramic displacement, depending on the actuator task. Therefore, novel types
of actuators for different tasks can be designed. The complex topologies obtained can be man-
ufactured using rapid prototyping techniques.

In future work, we intend to manufacture some prototypes and measure their output dis-
placements by using laser interferometry techniques. The method will be also extended for
designing sonars and hydrophones with specified directivity.
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