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ABSTRACT. A variational formulation of pre-loaded doubly curved shells is presented. The
analysis uses a two-field variable principle with w, the vertical tranverse displacement and F, Airy
stress function considered as the field variables. Finite elements satis fying C   continuity are used1

for the solution of the problem. Several applications are presented and the results are discussed and
are compared with previous analytical, numerical and experimental works.

1. INTRODUCTION

With the advent of high speed digital computation, the finite element method turned to be the most
adequate and accurate means of structural analysis of complex structures. Since the introduction of
the element conistent mass concept by Archer in 1963, many authors extented the application of the
method to structural dynamics response problems. The structural dynamic analysis of plates and
shells has usually been performed using the Hamilton's principle with the displacements u,v and w
taken as the field variables of the problem. Alternatively, the problem can be formulated using a two
field variable modified functional with the transverse displacement w, and Airy stress function F,
as the field variables of the problem. Bismark-Nasr (1993-c), presented a formulation using  the
transverse displacement w, and Airy stress function F, as the field variables for the problem of free
vibration analysis of isotropic cylindrically curved shallow shells. The Euler-Lagrange equations
governing the problem and the boundary conditions were obtained. It was shown that the boundary
conditions on F are as simple and direct to apply as on w. Bismarck-Nasr (1993-b) and (1994),
extented then the application to the buckling analysis of isotropic cylindrically curved plates, and
in (1993-d), to the supersonic flutter of cylindrically curved isotropic panels. Further, in (1995-a),
Bismarck-Nasr, treats the problem of stability of cantilever cylindrically curved isotropic panels
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subjected to nonconservative tangential follower forces distributed over the area of the panel and a
distributed follower at the free end of the panel using a two field variational formulation. Free
vibration analysis of laminated doubly curved shallow shells using a two field variational
formulation, were presented, by Bismarck-Nasr and Silva (1995-b). Aeroelasticity and buckling
analysis of laminated fibre-reinforced doubly curved shallow shells were presented by Bismarck-
Nasr in 1998a and 1998b using a two field variational formulation. The purpose of the present work
is to present a two-field variable variational formulation, with w and F taken as the field variables,
for the structural dynamic response problems of pre-loaded doubly curved isotropic shallow shells.
The solution of the problem is made using a C   continuity finite element method. Numerical results1

are given and the results obtained are discussed and are compared with previous solutions.

2. PROBLEM FORMULATION

Following the formulation, given by Bismarck-Nasr (1991), (1993-a,b) and (1994), and including
the effect of the curvature of the shell in the transverse direction, the variational equation of an
isotropic doubly curved shallow shells, considering the effect of the work done by an initial pre-load
inplane prestress load, N    ,N    ,and N     , can be written as,x

0
y
0

xy
0

(1)

where the functions subjected to variation are the transverse displacement w and the Airy stress
function F, D = Eh /12(1-< ), E is Young's modulus, h is the shell thickness and < is Poisson's ratio.3 2

The Airy stress function is defined as,

(2)

Performing the variational operation in Eq. (1), the Euler-Lagrange equations governing the 
problem are obtained and read,
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(3)

and the boundary condition for an edge < = constant are given by: 1. Clamped edges w = w   = 0,,<

and at a corner F     = 0, 2. Free edges F = F   = 0, and at a corner M    = 0,  ( i.e., w     = 0 ), 3.,µ< ,< ,µ< ,µ<

Simply supported edges w = 0, and at a corner F    = 0 and 4. Freely supported edges w = F = 0.,µ< 

A finite element method for the solution of the problem at hand can be performed using rectangular
elements that preserve C  continuity, by writing for the functions w and F interpolation functions in1

term of the nodal parameter as,

(4)

where z stands for w or F, and H    are first order Hermitian polynomials. Using the standard finitemn

element technique we obtain for each element a set of two equations cast in the form,

(5)

The element stiffness matrix [k    ], compatibility matrix [k   ] and the geometric matrices are theww FF

same as given by Bismarck-Nasr, (1993-b). The elements of the coupling matrix [k   ] read,wF

(6)

where the (4x4) matrices S1   and R2   are given in Bismarck-Nasr (1991). The element mass matrixa b

is given in Bismarck-Nasr (1991). Using now the standard finite element assembly technique and
applying the boundary conditions, we obtain for the whole structure the following two matrix



equations,

(7)

We observe that the degree of freedom {F}can be eliminated using the compatibility equation of the
system of equations, i.e., the second equation of the system (7), to obtain,

(8)
where,

(9)

Examination of eq. (9) reveals that the computational effort required for the solution of the structural
dynamic response problem when the present formulation is used is equivalent to that of a flat plate.
Further, the inplane boundary conditions are applied on F , F   ,F    and F    and are all nodal degrees,x ,y  ,xy

of freedom of the finite element model.

3. NUMERICAL RESULTS AND DISCUSSIONS

The present formulation permits the studies of structural dynamic response problems of pre-loaded
plates and shallow shells. As special cases are included the free vibrration analysis of plates and
shallow shells and the buckling analysis analysis of plates and shallow shells. In the following some
of the results obtained using the present formulation are reported and are compared with previous
investigation whenever possible.
The first example reported is a buckling analysis of square clamped plates on all edges. table 1
reports the results obtained using the present formulation and these are compared with previous
analytical solutios and other finite element formulations.
The second example treats the determination of the buckling coefficients of cylindrically curved
shallow shells for freely supported and clamped boundary conditions on all edges and these results
are compared the analytical solutions given in Bruhn (1973). From the results presented in both
Tables 1 and 2, it can be observed that good accuracy was obtained using the present formulation
with only a mesh size of 4 by 4 elements.



Table 1. Buckling coefficient, N   =  N  a  /B  D for all edges clamped plates.cr xx
2 2

Reference ANAL. FEMT FEMT FEMR FEMR FEMR FEMR
Timoshenko Allman Clough Kapur Dawe Carson Present
1961 1971 1968 1966 1969 1969

____________________________________________________________________
Load
____________________________________________________________________
Axial 10.07 10.99 - 9.284 10.147 - 10.192
bi-axial 5.30 5.602 5.625 4.975 - 5.3271 5.326
shear 14.71 17.382 - - - 15.043 15.122
____________________________________________________________________

FEMT = triangular finite element , FEMR = rectangular finite element 

Table 2. Shear buckling coefficient, N   =  N  a  /B  D for all edges clamped cylindrically curvescr xy
2 2

shallow shells. h= 0.05 cm and R= 400 cm. 

Reference ANAL. FEM ANAL. FEM
Bruhn Present Bruhn Present
1973 1973

______________________________________________________________
a/b Freely-supported Clamped
______________________________________________________________
1.0 6.3084 6.6149 8.4126 8.7890
1.5 4.7321 5.0526 8.0620 8.4789
2.0 4.2063 4.6902 7.3710 7.9688
3.0 3.8558 4.3658 6.3094 6.6514
______________________________________________________________

The next series of calculation presented are for free vibration analysis of freely supported on all
edges spherically curved shallow shells. Table 3 gives the results obtained using the present
formulation and these are compared with the Reissner analytical solution reported on 1955. From
the results obtained, it can be observed that good accuracy was obtained using the present
formulation with only a mesh size of 4 by 4 elements.
The last series of results presented are for free vibration analysis of cylindrically curved shallow
shells for freely supported conditions on all edges in the presence of axial pre-load in the axial
direction. The analysis was performed for different pre-load conditions and the related natural
frequencies were obtained. It is to be observed the the critical loading condition is obtain as a
subproduct of this analysis and is reached when a zero frequency is observed. The results obtained
are reported in Table 4.



Table 3. Natural frequency parameter,  S =  Dha T   /B  D for all edges freely supported,4 2 2

spherically curved  shallow shells, a/b=1,  1/ R = 0.0005 cm   . -1

______________________________________________________________
Mode m n Reissner Present

1955
Analytical FEM

1 1 1 2.76444 2.80532
2 1 2 5.35183 5.47992
3 2 1 5.35183 5.47992
4 2 2 8.22448 8.22888
5 1 3 10.18048 10.33221
6 3 1 10.18048 10.33221
7 2 3 13.13933 13.50552
8 3 2 13.13933 13.50552
9 1 4 17.10679 17.44990
10 4 1 17.10679 17.44990

______________________________________________________________
m,n are the number of halfsine waves in the x,y direction respectively.

Table 4. Fundamental natural frequency parameter,  S =  Dha T   /B  D for all edges freely4 2 2

supported, cylindrically curved  shallow shells, in the presence of an axial pre-load, N   = *

N  a  /B  D,  a/b=1,  1/ R = 0.02 cm   .xx
2 2  -1

______________________________________________________________

 N S
*

0 12.8
10 11.9
20 10.8
30 9.4
40 8.1
50 6.3
60 4.2
66.4 0.0 buckling load

______________________________________________________________

CONCLUSIONS

Structural dynamic response problems of pre-loaded doubly curved isotropic shallow shells has been
presented. The analysis is based on a modified two field variable variational principle. Numerical
results are given and the results obtained are discussed and are compared with previous solutions,
whenever availables. The analysis presented permits the free vibration analysis, combined buckling
loads and structural dynamic responce in the presence of pre-loads.
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