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ABSTRACT. The present work deals with the determination of the aeroelastic 
characteristics of cantilever wings. The structural representation is made using the 
classical finite element method of analysis. The aerodynamic representation is made 
using the strip theory and the doublet-lattice method. The aeroelastic solution is 
obtained in the modal base representation using the k and the pk methods of solution. 
The results obtained using the various methods are discussed in terms of computational 
efficiency and accuracy of the solutions. Further, the present results are compared with 
previous analytical solutions and wind tunnel experimental findings. 
 
 
1. INTRODUCTION 
 
Aeroelasticity is the branch of applied mechanics dealing with stability and response 
problems of a flexible structures in the presence of incremental nonstationary external 
airloads. The interest in the subject started early in this century with the advent of high 
speed flexible aircrafts, where several fatal structural failures, attributed to aeroelastic 
problems, were observed. Since then the subject has been extensively investigated 
analytically, experimentally and in wind tunnel tests. Several text-books dealing 
exclusively on the subject are availables. Among them one can cite Scalan and 
Rosenbaum (1951), Bisplinghoff  and Ashley (1962), Fung (1969), Dowell et al. (1978) 
and Bismarck-Nasr (1999). In the present work a study of the aeroelastic stability 
characteristics of cantilever wings is presented. The structural representation is made 
using the finite element method of analysis which is the state-of-art representation of 
complex structural dynamic configurations. The aerodynamic representation is made 
using the strip theory and the doublet-lattice method. The aeroelastic solution is obtained 
in the modal base representation using the k and the p-k methods of solution. The results 
obtained using the various methods are discussed in terms of computational efficiency 
and accuracy of the solutions. Further, the present results are compared with previous 
analytical solutions and wind tunnel experimental findings. 
 



2. PROBLEM FORMULATION 
 
Consider an elastic flight vehicle flying, in a cartesian frame of reference x,y,z, in a state 
of equilibrium under the action of a set of external loads. Due to an external disturbance, 
e.g., a gust or a sudden application of a pilot induced control action, the structure will 
strart to perform a perturbuted motion with normalwash displacements w(x,y,z,t). Due to 
this incremental motion a distribution of incremental nonstationary airloads, with a 
pressure distribution ∆p(x,y,z,t), will be introduced. In aeroelasticity we are first 
interested, in the determination of the stability of the motion of the elastic structure, and 
second in evaluation of the response of the structure due to these external disturbances. 
The present paper deals only with the stability part of the problem. Following Bismarck-
Nasr (1993 and 1999), we can formulate the problem using Hamilton's variational 
principle to obtain the related equation of motions of the flexible structural, and we can 
write, 
 

[M] q" + [B] q' + [K] q = F                                                              (1) 
 
where q is the displacement of the structure, primes stand for time derivatives, M, B and 
K represent the mass, structural damping and the stiffness matrices of the flexible 
structure, and  F is the incremental nonstationary airload. The finite element method 
represent nowadays the state of art, and is the most accurate way of formulation of the 
elastic-mechanical properties of complex structures, the method will thus be used 
exclusively to represent the left hand side of Eq. (1). The right hand side of Eq. (1) is the 
vector of the incremental nonstationary airloads written in the nodal degrees of freedom 
of the finite element model. Equation (1) represents a highly coupled system of 
simultaneous equations with an excessive number of degrees of freedom, rendering the 
dynamic stability study numerically excessive, even with the use of high speed modern 
computational devices, and at the same time would furnish results that are difficult to be 
interpreted physically. Both problems can be resolved using a modal transformation base 
on Eq. (1), thus writing, 
 

  {q} = [Q]{η}                      (2) 
 
where [Q] is the matrix of modal transformation and {η} is the vector of modal 
amplitude, the set of equations (1) is transformed to, 
 

 [µ ]{η"} + [β ]{η'} + [γ ]{η} = {φ}     (3) 
 
where [µ ] and [γ ] are the generalized mass and stiffness matrices, and are diagonal 
matrices, [β ] is the damping matrix, and for slightly damped structures, can be assumed 
as a diagonal matrix in the modal representation, and {φ} is the generalized incremental 
unsteady aerodynamic loads vector. For incompressible subsonic flows, the right hand 
side of Eq. (3) can be formulated using the strip theory or the doublet-lattice method. 
Theodorsen and Garrick in (1940) developed the bases of the strip theory and Albano 
and Rodden in (1969) originated the formulation of the doublet-lattice method. The 
details of both methods are given in Bismarck-Nasr (1999). In either cases, the equations 
of motion can be written as, 
 

[µ ]{η"} + [β ]{η'} + [γ ]{η} = [A1]{η'} + [A2]{η}   (4) 
 
where [A1] and  [A2] are the generalized aerodynamic matrices written in the modal base 



and are proportional to the modal velocity and modal displacement amplitudes 
respectively. The set of equations (4) represent a parametric eigenvalue problem with the 
air density ρ, the unperturbed Mach number M and the reduced frequency k, which are 
implicit in the aerodynamic matrices, are considered as the parameter of the problem. 
The solution of the parametric eigenvalue problem will determine the stability borderlines 
of the problem. Basically three groups of methods of solution are avaible in the literature 
for the determination of the stability parameters of the problem. These are grouped in the 
p methods, the k methods and the p-k methods. In the p methods the motion is assumed 
exponential with p (in general a complex number) consired as the exponent of the motion 
and therefore the eigenvalue of the problem. The p methods are limited to applications 
were the aerodynamic loads can be written in explicit forms directly proportional to the 
displacements and the velocities. In the k methods of solution the motion is assumed 
harmonic with ω (a real value) being the frequency of motion and a fictitious structural 
damping g is introduced in the system of equations in order to compensate the out of 
phase airloads. The solution of the parametric eigenvalue problem in the complex plane 
will determine the ω and g values at the corresponding airspeed velocity V. The method 
has the defect that the g parameter obtained is not the physical structural damping and 
therefore the solution is correct only at the critical velocity, where the damping is 
physically null, on the other hand these are the points of interest in the solution of the 
problem. A further defect of the method is that the airloads are calculated at a fixed 
Mach number, (to represent the compressibility effects), which does not corresponds to 
the critical velocities and therefore the method will need a matching numerical evaluation 
between the velocity and Mach number for the correct determination of the critical 
conditions. In spite of these defects the method bears its popularity due to its simplicity 
and its direct evaluation of the critical velocities. In the  p-k methods, the motion is 
assumed exponentional with p (in general complex) considered as the exponent of the 
motion. The solution strarts by fixing a value for the airspeed velocity, say V, and the 
corresponding Mach number M, and an initial guess of the the first modal oscillation 
frequency ω. The eigenvalue problem is solved and the first p value is determined. This is 
compared with the initial guess and an iteration process is started to improve the 
solution. The iterations are stopped when a desired accuracy will be achieved. The 
process is then repeated for all the modes. The complete iteration process is then 
repeated for other airspeed velocities. The great advantage of the method is that the 
damping obtained is a real physical damping value and can be compared with wind tunnel 
results and flight tests. Further, the process does not need a matching study between the 
velocity and the Mach number, since the aerodynamic matrices are calculated for the 
correct Mach number values. However, the iterations of the numerical process are 
extremely time consuming as compared to the k methods of solution. The complete 
details on the theoretical formulation of the methods of solution can be found in Scalan 
and Rosenbaum (1951), Bisplinghoff  and Ashley (1962), Fung (1969), Dowell et al. 
(1978) and Bismarck-Nasr (1999). 
 
 
3. NUMERICAL RESULTS 
 
In this section several numerical results are presented and the results obtained using the 
various methods of formulation and solution are discussed in terms of computational 
efficiency and accuracy of the solutions. Further, the present results are compared with 
previous analytical solutions and wind tunnel experimental findings. In present study five 
cantilever wing models were investigated. Table 1 below gives the identification used in 
the present study, the reference of previous analytical and experimental studies and the 



main characteristics of the structures considered. The wings studied have all trapezoidal 
planform, with a constant chord c, and span l. Table 2 gives the dimensions used for the 
different models analyzed. 
 

TABLE 1 – MODELS DESCRIPTION 

 
MODEL IDENTIFICATION REFERENCCE MODEL CHARACTERISTICS 

1 NASA TN D-1824 15° sweptback, untapered, aspect ratio 5.34, aluminum-made 
2 NASA TN D-1824 30° sweptback, untapered, aspect ratio 4.16, aluminum-made 
3 NACA RM L55E11 45° sweptback, untapered, aspect ratio 2.76, aluminum-made 
4 NACA RM L55E11 60° sweptback, untapered, aspect ratio 1.39, aluminum-made 
5 NACA TR 685 unswept, untapered, aspect ratio 13.5, aluminum-made 

 

TABLE 2 – MODELS DIMENSIONS 

 
MODEL CHORD, TAKEN 

PERPENDICULAR TO 

LEADING EDGE 

SPAN, TAKEN ALONG 

LEADING EDGE 
ANGLE OF SWEEP 

 c ,  inches l ,  inches Λ ,  degrees 
1 2.00 5.72 15 
2 2.00 5.55 30 
3 2.00 5.51 45 
4 2.00 5.55 60 
5 12.00 81.00 0 

 

The process of analysis for each model was performed in three main steps, listed below, 
 
1. Adjustment of the structural finite element model in order to reproduce the referenced 
physical properties of the model, such as weight, center of gravity (c.g.) location, natural 
frequencies and elastic axis (e.a.) location since not all the input data were availables in 
the cited references; 
 
2. Aerodynamic modeling in order to obtain the flutter velocity and frequency (critical 
point), using various aerodynamic theories; 
 
3. Repetition of the previous step about the critical point, in order to verify the 
computational efficiency.  
 
For the finite element representation, plate elements were used for the structural models. 
The number of elements in the spanwise and chordwise directions are given in Table 3. 
The boundary conditions applied in models 1 to 4 restrain all degrees of freedom of 
nodes located at 12.5% and 87.5% of the chord length at the wing root. These boundary 
conditions were applied in order to correlate the present structural dynamic results with  
the results given in the “NASTRAN Version 68 Aeroelastic Analysis Manual (1994). In 
model 5, all degrees of freedom at the wing root were constrained. 
  

TABLE 3 – STRUCTURAL FINITE ELEMENT MODEL REFINEMENT 

 
MODEL NUMBER OF PLATE ELEMENTS IN STRUCTURAL FINITE ELEMENT 

MODEL 
 SPANWISE DIRECTION  CHORDWISE DIRECTION 
1 7 4 
2 7 4 
3 7 4 
4 7 4 
5 12 3 

 
 

The following method was used in adjusting the weight: with a typical value of the 
material density, the total weight of the model was obtained in a first run, and since the 
physical models were all solid models, the density was adjusted by multiplying that 



typical value by the ratio between the measured weight and the calculated weight. The 
C.G. location was checked only for model 5, since models 1 to 4 have a very simple 
cross section, while model 5 has an airfoil-shape cross section. The method used was as 
follows: after the first run, the calculated C.G. location was ahead of the actual location; 
a heavier material was then used in the rear portion of the wing (from 70% of chord to 
trailing edge), and a second run performed. The results of these two runs were then 
interpolated (C.G. location versus density of the rear portion of the wing), and a new 
value for the density found. A new run was performed only to confirm the C.G. location 
and to re-scale the weight, as previously explained. 
After adjusting the densities to provide correct weight and C.G. location for all models, 
the stiffnesses were adjusted to exhibit the modal characteristics (frequencies and mode 
shapes) of the referenced models. The method in adjusting stiffness was the modification 
of the mechanical properties (Young's and shear moduli, and Poisson's ratio). The 
Young's and shear moduli are multiplied by the square of the frequency ratios (i.e., the 
ratio of referred experimental values and the present calculated frequencies). A new run 
was performed, the frequency values checked again, and the process repeated if there 
was no agreement among calculated and experimental values. In general, the method 
converged in two or three runs. With the stiffnesses so adjusted, the modal shapes were 
also verified, but in a qualitative sense, for models 1 to 4, through the comparison of 
node lines of the finite element model and those reported by Tuovila (1955) and Yates 
(1963). The aerodynamic models used in the present study are given in Table 4. The 
number of panels or strips in each model is indicated in the table. 
 
 

TABLE 4 – AERODYNAMIC MODEL REFINEMENT 

 
 

MODEL DOUBLET-LATTICE METHOD STRIP THEORY 
 SPANWISE DIVISIONS  CHORDWIISE DIVISIONS SPANWISE DIVISIONS 
1 6 4 6 
2 6 4 6 
3 6 4 6 
4 6 4 6 
5 12 3 6 

 
 
The results obtained in the present investigation are summarized in Tables 5 for the 
frequencies and normal modes. Table 6 gives the flutter velocities results. Table 7 
provides the flutter frequencies, and Table 8 flutter reduced frequencies. The present 
results are compared in these tables with the experimental findings of the cited 
references. 
 
 

TABLE 5 – FREQUENCY RESULTS 

 
 

MODEL FREQUENCY, Hz 
 MODE # 1 MODE # 2 MODE # 3 MODE # 4 
 CALCULATED TESTED CALCULATED TESTED CALCULATED TESTED CALCULATED TESTED 
1 34.3 36 210..0 210 260.4 242 ------- ------- 
2 40.1 35 207.7 210 310.5 270 ------- ------- 
3 46.7 35 200.9 198 365.2 294 ------- ------- 
4 54.8 48 212.8 210 392.6 396 ------- ------- 
5 1.22 1.31 7.7 7.7 17.8 17.8 22.0 20.8 

 

 
 
 



 
 

TABLE 6 – FLUTTER VELOCITY RESULTS 

 
MODEL FLUTTER VELOCITY, ft/s 

 DOUBLET-LATTICE 
METHOD 

STRIP THEORY TESTED 

 K PK K PK  
1 487.1 478.5 434.5 451.2 495 
2 493.4 485.5 441.2 459.5 517 
3 549.4 522.5 493.8 463.2 550 
4 798.4 775.7 688.2 714.2 836 
5 299.5 303.2  342.1 338.6 302.0 

 
 

TABLE 7 – FLUTTER FREQUENCY RESULTS 
 

MODEL FLUTTER FREQUENCY, Hz 
 DOUBLET-LATTICE 

METHOD 
STRIP THEORY TESTED 

 K PK K PK  
1 117.4 122.0 106.9 110.9 120 
2 119.7 121.6 107.6 121.6 120 
3 118.5 140.0 124.0 97.8 120 
4 158.5 162.5 90.6 174.0 110 
5 10.7 10.6 8.4 8.4 10.2 

 
 

TABLE 8 – FLUTTER REDUCED FREQUENCY RESULTS 

 
MODEL FLUTTER  REDUCED FREQUENCY 

 DOUBLET-LATTICE 
METHOD 

STRIP THEORY TESTED 

 K PK K PK  
1 0.1307 0.1383 0.1334 0.1332 0.1314 
2 0.1467 0.1515 0.1474 0.1600 0.1403 
3 0.1597 0.1984 0.1859 0.1564 0.1616 
4 0.2079 0.2194 0.1379 0.2552 0.1378 
5 0.1121 0.1097 0.07714 0.07794 0.1061 

 

 
CONCLUSIONS 
 
A study of the aeroelastic stability characteristics of cantilever wings has been presented. 
The structural representation is made using the finite element method of analysis which is 
the state-of-art representation of complex structural dynamic configurations. The 
aerodynamic representation is made using the strip theory and the doublet-lattice 
method. The aeroelastic solution is obtained in the modal base representation using the k 
and the p-k methods of solution. The results obtained using the various methods have 
been compared with previous analytical solutions and wind tunnel experimental findings. 
It can be concluded that the results obtained agree favorably with previous analytical and 
experimental findings in terms of accuracy of the final results. As expected the p-k 
method is more excessive in terms of computational requirements as compared to the k 
methods of the aeroelastic solution. 
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