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A dynamic system is called nonideal, when we consider the influence of the oscillatory
system on the driving force, i.e., there is a dynamic interaction between the motor and the
pendulum and vice-versa. As the motor’s action depends on the pendulum’s motion, it can not
be described by a determined function on the time, and its motion must be represented by a
differential equation increasing the degrees of freedom of the system. In this case, the energy
source is called of limited power (Nayfeh and Mook (1979)).

The escape from the potential well in the forced oscillator can be associated with
homoclinic tangles and fractals basin, and consequently it is often followed by chaotic
motions, Thompson �� �� (1987). Thompson (1989) studied the escape of the asymmetric



potential and observed that the stability loss of the system occurs through a fold bifurcation.
When an attractor set undergoes a discontinuous change, disappearing from the phase space,
the bifurcation is catastrophic and it is known as blue-sky catastrophe or boundary crisis. A
catastrophe in a dissipative dynamical system which causes an attractor to completely lose
stability will result in a transient trajectory making a rapid jump in the phase space to some
other attractor, Stewart and Ueda (1991). This event occurs due to a fractal basin boundary,
and in the presence of even infinitesimal noise we cannot predict to which of the remote
attractors the system will jump, Thompson and Soliman (1991). Stewart ���� (1995) studied
the optimal escape of periodically forced oscillations from a potential well. It is important to
observe that the phenomena, above mentioned, are related with softening systems near the
fundamental resonance region.

In this work, we will investigate through numerical simulation a particular nonideal
system consisting of a pendulum whose support point is vibrated along a horizontal guide by a
two bar linkage driven from a DC motor, which has limited power (See “Fig. 1”), in a
secondary resonance region close to ′ ≈θ 2 5. . In this region, the system presents the escape
phenomenon from the potential well, characterized by rotational solutions of the pendulum
(Belato�(1998)).

Other features of this system were analyzed in previous works, near the main resonance
region ( ′ ≈θ 1), including: periodic, multi-periodic, quasiperiodic and chaotic motion (Belato
(1998), Belato ���� (1999a) and Belato ���� (1999)), and near the secondary resonance region
( ′ ≈θ 5 ), where a saddle node bifurcation occurs, Belato (1998).

Figure 1�� Schematic  of  the  system  “electromotor-pendulum”.

When the motor speed is close to the region determined by ′ ≈θ 2 5. , a global bifurcation
known as blue-sky catastrophe occurs, which is characterized by the disappearance of a
limited attractor of the phase space and the system jumps to a remote attractor that can be
limited or not.

This paper is organized as follows. The Section 2 contains the differential equations that
govern the motion of the electromotor-pendulum system. Section 3 gives the results of
numerical simulation and its interpretation and Section 4 contains the conclusions.
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The complete system of the dimensionless differential equations that determine the
motion of the electro-motor pendulum (See details in Belato (1998)) are given by:
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motor angular displacement, α is the pendulum angular displacement, % is the moment of the
inertia of the rotor of the motor, � is the pendulum’s mass, � is the length of the pendulum,
cA  is the damping coefficient for the friction at the pin A, cP  is the damping coefficient for
the friction on the pendulum, V is the motor voltage, L is the inductance, R is the electrical
resistance, I is the current, K T  is the torque constant, K E  is the voltage constant, cm  is the
constant for the internal loss coefficient in the motor, Tf  is a constant friction torque in the

motor, ω0 = � �   is the natural frequency of the pendulum. The primes denote derivatives

with respect to � �* = ω0 .
The chosen control parameter is the motor voltage, represented by the parameter �8 . In

previous works, this parameter was considered as a constant and only the resulting steady state
behavior of the system was analyzed. Here, we will adopt the control parameter as a function
of the time, to analyze the transient behavior of the electromotor pendulum system, and it will
be given by:

� � '�8 = tanh( *)     (2)

where  � and ' are constants values.
Then, the emphasis here is on a qualitative description and identification of the pendulum

behavior when the parameter  '  in the variable �8   is varied.
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We carried out a large number of numerical simulations with different initial conditions
and numerical values of the physical parameters of the problem. Simulink  Toolbox of the
MATLAB , is used to simulate the system of differential equations and the numerical
integrator used is the Runge Kutta fifth order (RK45) with variable steplenght. The parameters
in this paper used in the simulation of the system of differential equation (1) are:
∈ =∈ =1 2 0 233. , � � �1 2 6 0= = = , �3 0 00098= . , �4 0 0042= . , �5 0 01055= . , �7 0 01= . ,
�9 3383= . , �10 78 40= .  and � � '�8 = tanh( *)  is the parameter used to control the diversity of
nonlinear behavior of this system, with   � = 290 and  ' is varied. The initial conditions for the
following results are: ′ = =θ θ( ) ( )0 0 0, ′ = =α α( ) ( )0 0 0  and  �(0) = 0.



When the control parameter is constant, results for different motor voltages will not
consider the transient motion, and it is possible to detect different pendulum behaviors for
increasing motor speed. This system presents three main regions: the fundamental resonance,
where a chaotic attractor appears, and two secondary resonance regions. Near the first one,

′ ≈θ 2 5. , it is verified that the escape from the potential well leads to divergence to infinity
and in this case the pendulum starts to have rotational motion, i.e., the pendulum escapes from
the potential well, its motion is captured by the motor motion and both enter in a synchronized
state, Belato (1998). This system behavior is detected inside of the potential well determined
by the point of minimum ( , ) ( , )′ =α α 0 0 , “Fig. 2b”.

In “Figure 2a” it is shown the behavior of the pendulum motion as the motor speed
increases, when the control parameter �8  is constant. We can note the existence of the
separatrix (heteroclinic orbits), obtained by the undamped unforced pendulum equation, that
separates bounded and unbounded solutions, “Fig. 2b”. When we introduce the motor in the
mechanism, some bifurcational characteristics appear on the system. One of them is observed
in the region close to ′ ≈θ 2 5. , where a global bifurcation known as blue-sky catastrophe
occurs. In this case, a periodic or quasiperiodic attractor loses stability disappearing from the
phase space and the pendulum jumps to one of two remote unlimited attractors, i.e., it enters
in a rotational motion. An explanation for this phenomenon is that there occurs the appearance
of a homoclinic connection in the system. Due to this connection, the point ( , ) ( , )′ =α α 0 0
becomes unstable when the motor speed travels through the domain 2 5 50. .< ′ <θ , and for the
values ′ >θ 50.  the pendulum motion converges to bounded periodic solutions oscillating
around the point α ≈ ±(π ⁄ 2), Belato (1998). This graphic only represents a schematic of the
phenomenon of the electromotor pendulum, and results with more precision will be presented
in future works.

Figure 2���Schematic representation of the phase portrait of the pendulum. (a) Characteristics
of the phase portrait as the motor speed is increased. For ′θ  ≈ 2.5  the solid line is

discontinuous because in this region occurs a global bifurcation (called blue-sky catastrophe),
where the attractor makes a rapid jump to a remote attractor. ′θ  represents the mean of the

motor’s speed ′θ . (b) Projection of the phase portrait in the plane ′ ×α α , as ′θ  < 5.0.
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Now, we study the pendulum behavior considering the control parameter as defined in
“Eq. 2”. The possibility of passage through resonance, where the motor speed may be
captured by resonant speed, inciting the pendulum’s escape from the potential well will be
investigated.  Adopting the value � = 290 we obtain the numerical results presented in “Fig.
3” and “Fig. 4”.

Figure 3���System behavior for � = 290 and ' = 0.05. (a) Motor speed transient.
(b) Transient motion of the pendulum, asymptotically converging to the periodic attractor,

presented in (d) with small amplitude. (c.) Phase space of  the motor when
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the periodic attractor is reached. (d) The periodic attractor is not
symmetric indicating that the point ( , ) ( , )′ =α α 0 0  becomes unstable.

For ' = 0.05, we noticed that the pendulum motion is limited and the solution converges
to a periodic attractor represented in “Fig. 3d”. This solution is not symmetric,  indicating the
presence of instability in the point ( , ) ( , )′ =α α 0 0 , when the mean motor’s speed is ′ ≈θ 3 7. .
“Fig. 3c” shows the steady state of the motor behavior, when the periodic attractor is reached.

Figure 4���System behavior for � = 290 and  ' = 0.04. (a) Temporal representation of the
motor speed when the system enters in rotational motion. (b) Phase space of the pendulum

steady state. (c.)  Phase space of the motor steady state. Note the existence of a
synchronized state among the motor motion and the pendulum motion.
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Taking ' = 0.04, we simulate a slower passage through the critical speed of this system.
For this case, when the system pass through the resonant motor speed, ′ ≈θ 2 5. , the pendulum
escapes from the potential well to an unlimited remote attractor, i.e., it can enter in rotational
motion in clockwise (or anticlockwise) direction, “Fig. 4”. In  “Fig. 4a ”, we can observe an
increase in the amplitude of the motor motion, but its behavior looks regular and synchronized
with the pendulum motion, “Fig. 4b and 4c”. Although, the pendulum escape occurs due to
the existence of a homoclinic trajectory, i.e., an oscillation of infinite period, but no irregular
or chaotic motion in the system is detected when the motor velocity ′ ≈θ 2 5.  is reached.
However, the proximity of the control parameter � 8  from the bifurcation point reveals a lack
of precision to predict the final state of this system, because there occurs a decrease of the
basin of attraction in this domain, leading to a basin catastrophe (this topic will be analyzed in
a future work).

In “Fig. 5” is represented a initial variation of the control parameter � 8 , when  ' = 0.04
and '�= 0.05.

�
Figure 5���Temporal representation of the function � � '�8 = tanh( *) ,

for ' = 0.04 (rotational solution), and ' = 0.05 (periodic attractor), when   � = 290.
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In this work, a particular nonideal nonlinear electro-mechanical system was analyzed. In
the secondary resonance region, close to ′ ≈θ 2 5. , the system undergoes a global bifurcation
(blue-sky catastrophe), which turns the solutions in this domain of the control parameter
unbounded. When we consider a small variation of the transient behavior of the control
parameter, we cannot predict when the system converges to the limited attractor or when it
will be captured by the resonant motor speed and it will escape to a remote attractor. For the
adopted parameters, the final solution becomes unpredictable but it does not reveal any
irregular or chaotic behavior.
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