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Abstract: The deformation of the partially solidified strand during near net shape continuous
casting of thin slabs is only one example of a technologically important process where a mushy
zone is mechanically altered in order to achieve improved grain structures and homogeneity.
However, the phenomena occurring during plastic deformation of a solidifying mush are poorly
understood, have not been observed directly, and have not been modeled in detail. A
mathematical model that predicts the temperature and solid fraction profiles, liquid
concentration evolution, and solid phase displacement during the deformation of a solidifying
mush is presented. This model is derived considering a two-dimensional case, the volume
averaging method, the enthalpy technique, and a coordinate transformation to avoid a changing
mesh in a numerical solution. The numerical results are found to match the experimental
behavior of metallic alloys during solidification with or without deformation.
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1. INTRODUCTION

The manufacture of almost every man-made material involves the solidification process at
some stage of the manufacturing process. Some of the important processes that involve
solidification are foundry, welding, casting of ingots and continuous casting. Continuous casting
is of such importance because it is a very economic method of forming a metallic component.

The composition variation within a solidified product is known as segregation. Segregation
in an alloy is a result of solute rejection at the solidification front followed by its redistribution by
diffusion and mass flow. Depending on the extension of composition variation, this defect is



classified as microsegregation, relative to grain scale, or macrosegregation, relative to the product
scale. Macrosegregation affects the mechanical (ductility, strength, etc) and chemical properties
(corrosion resistance) of materials in the product extension. It also affects precipitation of weak
second phases, that was not expected if the initial composition was achieved, and porosity may
be generated.

The formation of macrosegregation during metallic alloys' solidification is mainly caused by
macroscopic movement of liquid metal and/or solid phases. Considering the case of continuous
casting process, the following phenomena have been established as driving forces for this
movement (Beckermann & Viskanta, 1993; Prescott & Incropera, 1994; Miyazawa &
Schwerdtfeger, 1981):

- density changes due to phases transformations during the solidification and cooling;
- density changes due to temperature and compositional changes within a phase (natural

convection);
- the action of gravitational field on a density gradient (buoyancy driven flows);
- drag forces from melt convection or from solid motion;
- external forces such as magnetic fields and forces applied on the surface (forced

convection);
- solid stress due to solidification contraction or expansion (as a result of temperature

variation or solid state phase transformation), metalostatic pressure, bulging between rolls
and roll bending.

A review of the models previously employed to study the macrosegregation formation
induced by deformation, particularly the centerline macrosegregation, demonstrates the range of
approaches used by researchers (Moore, 1980; Lait & Brimacombe, 1982; Irvwing, 1993,
Miyazawa & Schwerdtfeger, 1981; Lesoult & Sella, 1990; El-Bealy & Fredriksson, 1991). These
approaches can be evaluated by considering the physical principles and the simplifying
assumptions used to derive the correspondent equations that the authors assumed to explain the
phenomenon of centerline macrosegregation.

Recently it has been proposed that the deformation of the partially solidified strand during
near net shape continuous casting of thin slabs could reduce the defect of centerline
macrosegregation. However, to the author’s best knowledge, no mathematical model or even sets
of complete experimental results that could be used to relate the process parameters and the
macrosegreation reduction have been presented, i.e., when and how to apply the deformation.
Examples of process parameters are the amount of deformation, the deformation rate, solid
fraction and temperature at the moment of deformation and the effects of alloy composition.

2 – MODEL DESCRIPTION

The model development starts with a microscopic description. Conservation laws are
introduced at the microscopic scale (Figure 1). Assumptions are made about the microscopic
behavior of phases and interfaces, and accordingly, constitutive equations are also introduced at
the microscopic scale (e.g. Newtonian fluid, Fickian diffusion, etc.). Resulting field equations are
then averaged to obtain macroscopic field equations. Often in order to make the averaging
procedure tractable and to obtain desirable results, many assumptions are made in the averaging
process. These assumptions are typically related to the spatial and/or temporal distribution of
properties, expected or magnitude of various terms, and existence of certain relations among
various properties.



The main advantages of the averaging approach are that the available information at the
microscale is passed on to the macroscale; the interfaces and their thermodynamic properties are
explicitly taken into account; and the microstructure is more appropriately modeled. The
disadvantage of this approach is that the types of restrictions imposed, especially those justifying
neglect of various microscopic and macroscopic terms, may seriously limit the generality of the
results and the opportunity to systematically explore fundamental behavior of complex
phenomena. Also, construction of a full thermodynamic theory at the macroscale becomes
intractable.

Figure 2 – (a) system or macroscopic level (continuum); (b) representative elementary volume on
a microscopic level; (c) continuum solid at microscopic level.

Figure 1 presents the sketch for representing, at the grain scale (macroscopic level), the
liquid and solid phases in the mushy region. The mushy zone comprises two interpenetrating
phases (Wang & Beckermann, 1993). A porous medium is defined as a portion of space that is
consisted of a solid phase and a void space. The interconnected voids are occupied by one or
more fluid phases, which can flow through by the material.

On the void scale (microscopic scale) the flow quantities (velocity, pressure, etc.) will clearly
be irregular (Nield & Bejan, 1992). However, in typical experiments, the quantities of interest are
measured over areas that cross many voids, and such space-averaged (macroscopic scale)
quantities change in a regular manner with respect to space and time, and hence are amenable to
theoretical treatment.

Consider the transport of a general scalar specific quantity Ψk  associate with a phase k in a
multiphase mixture. For an arbitrary fixed control volume V of surface A, which is larger than a
phase element but smaller than the characteristic domain dimension, conservation of Ψk  can be
expressed, in differential form for each phase (Ni, J.; Feller, J.; Beckermann, C., 1991; Bennon &
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Incropera, 1987; Voller & Brent, 1989), as a balance of accumulation, net outflow by advection
and diffusion, and volumetric production in a general form as follows:
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where t = time, kφ = solid fraction of a given phase k, kρ = density of a given phase k; kΛ =

diffusion coefficient of a given phase k, Sk = volumetric source term which includes production

or annihilation of kΨ .

In order to consider the grid changing due to deformation application (Figure 2), it is
necessary to apply a coordinate transformation to the equation 1. If we consider a transformed,
structured and orthogonal form (Maliska, 1995; Shyy et al., 1996), the general equation in
coordinates can be written as follows:
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The metric tensor components α ij (Shyy et al, 1996; Maliska, 1995 ) and the Jacobian of the

transformation, are given by
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Figure 2 – (a) schematic illustration of the domain used in solidification simulations on a
macroscopic scale prior to the deformation stage and (c) after the deformation stage; (b) a typical
representative elementary volume; (d) a 1-D platelike model of a dendrite arm and illustration of
a solid and liquid concentration profiles on a microscopic scale. The coordinate system X,Y is
fixed and the coordinate system x,y moves with the solid phase translation, i.e., with the domain
movement.

The metrics of transformation are defined as
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et al, 1996; Maliska, 1995, Zeng & Faghri, 1994):
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Equation 3 can be rewritten as
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The grid velocity is also a very important variable when we consider a coordinate
transformation. In our case, the coordinate system of the solid phase relative to the moveable wall
(x,y) is fixed at position (0,y). Hence, the grid velocity is equal to zero at this position and it
increases in the direction of Scx = . The Cartesian components of the grid velocity vector ( τx

and τy ) are calculated, for a given position i at a given time l, by
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The grid velocity also varies according to the grid deformation pattern assumed for a given
situation.



3 – NUMERICAL IMPLEMENTATION

For the results presented in this paper, an implicit, control-volume-based finite difference
scheme has been used to discretize the conservation equations, and a power-law scheme has been
used to evaluate the finite-difference coefficients. The velocity-pressure coupling in the
momentum equations was handled using the SIMPLER algorithm (Patankar, 1980). A uniform
grid deformation for the mesh is assumed during the deformation stage.

4 - RESULTS AND DISCUSSION

The model was applied to a case of deformation of an organic alloy (SCN-acetone).
Succinonitrile (SCN) is a transparent organic substance in the liquid state that is used as an
analogue material to study some phenomena related to the solidification processes. This material
solidifies in a dendritic morphology. Experimental works with this alloy are been performing to
compare the numerical results. Acetone was added to obtain an alloy behavior, i.e., to get a
segregated profile during solidification. The initial composition for the experiments presented in
this study is 11.3 wt% of acetone. The shape of the domain is rectangular and the initial and final
sizes are 50 x 170 mm and 40 x 210 mm respectively. The boundary condition at the interface
heat exchanger/SCN-acetone is the temperatures measured by thermocouples placed on this
interface. The other boundaries are considered as adiabatic (Figure 2).

Space limitations prohibit the presentation of variables evolution plots for many times or
during the deformation stage. Only two times were select to present the variables evolution. The
first plot set (Figure 3) shows the variables at the time relative to the deformation beginning, i.e.,
at 26246 s from cooling start. The second plot set (Figure 4) is relative to the end of deformation
end (26301 s). Figure 3 shows the (a) mesh, (b) temperature field, (c) solid fraction contours, (d)
mixture concentration, (e) velocity field and liquid concentration contours and (f) a detail the
velocity field for the time just before deformation was applied. Figure 4 shows the same results
group for a time just after deformation.

Since the liquid is cooled as it falls along the left wall, the mushy zone is thicker near the
bottom of the casting (Figure 3c) as well as the temperature drop is higher (Figure 3b). Figure 3e
shows the convection pattern (buoyancy driven flow) in the bulk melt and in the mush zone
typical of metallic alloys solidification. The liquid concentration contours in Figure 3e and solid
fraction in Figure 3c show that the counterclockwise flow in the melt and the downward flow
trough the mush zone carry some of this enriched liquid into the bulk melt.

Figure 4e and 4f show the changes in the liquid flow when a deformation is applied. The
liquid is pushed upward carrying the solute enriched liquid from the regions near the center. It
will promote a reduction in the acetone concentration in this region after a complete
solidification. This implies in a tendency to reduce the centerline macrosegregation defect.

5 – CONCLUSIONS

The mathematical model and the numerical code presented can be useful to determine the
suitable process parameters in order to reduce the macrosegregation defect in the continuous
casting process. The numerical result patterns agree with experimental and other numerical codes
results for the stage without deformation and with experimental observations when a domain
deformation is applied. These preliminary simulations are now being compared to laboratory
experiments with organic and metallic alloys.



Figure 3 – (a) Mesh, (b) temperature field, (c) solid fraction contours, (d) mixture concentration,
(e) velocity field and liquid concentration contours, (f) zoom for the velocity field. Initial
concentration for acetone = 11.3 wt%; time = 20246 s, no deformation was applied.
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Figure 4 – (a) Mesh, (b) temperature field, (c) solid fraction contours, (d) mixture concentration,
(e) velocity field and liquid concentration contours, (f) zoom for the velocity field. Initial
concentration for acetone = 11.3 wt%; time = 20301 s, deformation was applied.
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