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Abstract: In this paper a two-dimensional elastoplastic boundary element formulation is
presented to analyse composite domains. The non-linear effects are assumed to develop only
over the matrix material. In order to take into account the non-linear effects, the usual
procedure based on the initial stress technique is adopted. The final non-linear system of
equations is analysed by using explicit and implicit techniques. The internal values are
approximated over isoparametric cells to perform the required domain integrals. The
reinforcement used to define the composite is given by introducing internal bars,
approximated by finite elements. The bar stiffnesses are then transferred to the 2D algebraic
equations using the inclusion technique. The contact between matrix and the reinforced
material is assumed without relative displacements, i.e. no debonding takes place. Numerical
examples are shown to illustrate the accuracy and the stability of the developed algorithm,
comparing the final numerical results with experimental ones.
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1. INTRODUCTION

The boundary element method (BEM) has already proved to be a powerful tool to solve
elastic and inelastic problems in the continuum mechanics context (Brebbia et al., 1984;
Telles, 1983; Coda & Venturini, 1999). More recently, the couplings of Finite Element
Method (FEM) and BEM have been proposed to solve specific problems where both
techniques can be employed together taking the advantages of their best characteristics (Coda
& Venturini, 1995; Luco & Barros, 1994).

In this paper, we choose to treat composite materials, more specifically elastic fibbers
(FEM) embedded into elastoplastic matrices (BEM). The advantage of employing BEM to
model the matrix material is the higher accuracy observed when this technique is used to
evaluate internal stresses (or strain). On the other hand, the thin fibbers can be modelled by a
very simple and accurate a truss bar finite element model.



Some aspects regarding the integration techniques for non-linear BEM are mentioned, as
well as the way followed to establish the coupling technique. An example is then selected to
demonstrate the accuracy and applicability of the developed numerical algorithm.

2. BEM NON-LINEAR FORMULATION

The well-known initial stress concept is adopted here as the starting point to derive the
non-linear BEM formulation. Thus, the boundary integral representations for displacements
and strains at internal points are given by:
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where the following values must be specified:
uk - Displacement in the k direction.
pk - Traction in the k direction

*
iku  - Displacement in the k direction due to a unit concentrated load applied in i direction at

any source point s of an infinite domain.
bk - Body force in the k direction.
Cik - Free term dependent upon the boundary geometry at the source point s.
Q or q - Field point either taken along the boundary or inside the domain.
S or s - Source point taken along the boundary, inside or outside the domain.

)s(ijε  - Strain component at an internal source point s.
*
ikp , )Q,S(*

ijkε� , )Q,S(p*
iik

�

, )q,S(*
ijk"

�ε  and )q,S(*
ijkε� - tractions, strains and other values derived

from the displacement field *
iku .

Γ′  - Unit circle around the source point.
In order to find the algebraic equations of BEM, equations (1) and (2) must be discretized

by assuming boundary and internal value approximations. We have adopted quadratic
isoparametric elements along the boundary to approach displacements and tractions, while
quadratic quadrilateral isoparametric cells were adopted to approximate the initial stress field
over the domain. By taking into account those approximations, the following algebraic
equations are obtained:

P0 QQGPBfHU σ+σ++=            (3)

p0 QQUHPGfB σ′+σ′+′−′+′=ε     (4)

in which, vectors and matrices are the well-known ones defined for BEM formulations.
As pσ is given in terms of ε , equation (4) is non-linear requiring appropriate schemes to

be treated. Equations (3) and (4) depends on each other and therefore must be solved together.



This procedure is however simple, equation (3) can be easily replaced into (4) reducing the
degrees of freedom required for this non-linear analysis. Thus, the solution can start by
imposing boundary conditions to both equations, which does not reduce the degrees of
freedom. This step is made, as usual in BEM formulations, by interchanging columns of
matrices H and G, and H' and G' as well leading to:

PQFAY σ+=                  (5)

pSYAF σ+′−′=ε    (6)

where A  and A′  contain the coefficients due to the unknown boundary values, F  and F′  are
independent vectors due to prescribed boundary conditions and body forces and Y is the
vector containing boundary displacement and traction unknowns.

Solving equation (5) in terms of Y, one has:
P11 QAFAY σ+= −−   (7)

Replacing equation (7) into equation (6) gives:
pe Sσ+ε=ε   (8)

where

FAAF 1e −′−′=ε   (9a)

QAASS 1−′−=   (9b)

Equation (8) is the system of algebraic equations that must be solved to compute non-
linear solutions of elasto-plastic bodies.

Before describing the fibber finite element model to couple with the BEM relations, it is
recommended to describe the line load element used to represent the fibber reaction inside the
continuum.

The line load due to the embedded fibbers, shown in Figure 1, is given by a couple of
lines (it could also be approximated by a single line) along which the contact forces will be
transferred between the steel and matrix materials. Inside the matrix material, represented by
the BEM equations, those lines of loads are treated similarly to tractions over the boundary;
therefore, they are approximated by using nodal values and shape functions. On the other
hand, displacements are exactly represented by integral equations, although computed only at
particular points defined along the fibber skeleton lines. One can compute a matrix similar to
G to represent the contact force influences.

Figure 1. Internal load lines. Collocation points along the bar central line.



The same scheme used to couple steel bars with the solid along internal lines can be
extended to consider this coupling along the solid boundary. One has only to write the proper
expressions to take into account that particular coupling.

3. FIBBER FEM MODEL

As it was already said, the simple truss bar finite element is adopted here to model
internal elastic fibbers. For a better comprehension, let us review quickly this formulation,
starting by the virtual work principle from which a non-usual finite element approach can be
derived.

iiFupdu= d ∑∫∫
ΓΩ

+ΓΩσε (10)

Usually from the first term of the right hand side of equation (10), one obtains the
equivalent nodal force vector. If the traction surfaces p are unknown and approximated, this
term leads to the lumping matrix named here G as well. By neglecting the concentrated forces,
the second term in equation (10), one can write the following set of algebraic equations:

FEMFEMFEM PGKU = (11)

where matrix GFEM is easily derived and given by:
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with θ  being the angle between the local direction x  and the corresponding global direction;
the subscript "FEM" denotes finite element nodes.

4. BEM/FEM COUPLING

The coupling treated here is concerned with the combination of two systems of algebraic
equations: one representing a 2D body obtained by using BEM and another representing the
entirely embedded bar system governed by FEM algebraic relations.

The equilibrium and geometrical compatibility conditions have to be assumed along the
contact and can be represented by:

FEMC PP −= (13)

FEMC UU =                                                                                              (14)

where the superscript "C" denotes boundary element nodes connected to the finite element
domain.

From these assumptions, equation (11) can be modified to give:

FEM1
FEM

FEM KUGP −= (15)



One can substitute equation (15) into equations (3) and (4), taking into account equations
(13) and (14) to obtain:
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where "d" stands for disconnected BEM nodes.
Rearranging equations (16) and equation (17) one finds:
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where

KGGHH 1
FEMCCC
−+=           (20a)

KGGHH 1
FEMCCC
−′+′=′           (20b)

Writing equations (18) and (19) into a more compact form we have:

p* QGPUH σ+=             (21)

p* SUHPG σ+′−′=ε (22)

Equations (21) and (22) represent the reinforced body algebraic equations. They exhibit
the usual form of the BEM algebraic representation. Thus, one can follow the usual procedure,
given by equations (9), to deal with reinforced non-linear problems.

5. SOLUTION PROCEDURE

In order to solve the non-linear system of equations (9), an incremental scheme must be
followed. This can be obtained by expanding equation (9), as follows:
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where s is a defined load level.
The term ε∂σ∂ /p  is a well-known value for elastoplastic analysis, relating strain and

elasto-plastic stress variations, which is usually referred as pC (Simo & Taylor, 1985). Thus,

equation (23) becomes,
e
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or

e
1ss1sp )SCI( ++ ε∆+ϕ=ε∆−             (25)



For an approximate case, the first term on the right hand side of equation (24) is a trial
correction, and computed as a residual from the previous time step. From equation (24),
several integration schemes can be followed to solve a non-linear problem. The simplest one
is known as the explicit scheme and has been employed together with BEM formulations
many times (Brebbia et al., 1984). The second one, named here the tangent explicit algorithm,
is described by the following steps:

a1) Computing the strain increment
e

1ss
1

1s ++ ε∆+ϕ=ε∆ (26)

a2) Elastic stress prevision
1
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1
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a3) Yielding test. If yielding is not reached go to a1 making s=s+1 to start a new increment
with 1s+ϕ  = 0. Otherwise,
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a4) Correction phase.
p1
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1
p
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The increment p1
1s+σ∆  represents the error of the whole process described in equation (24).

Go to item a2.

a5) Convergence test.
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Then compute

1s
p

1s
e

1s1s S ++++ ε−σ+ε=ϕ (33)

Go to a1 to start a new increment.

The second possible non-linear algorithm procedure is the implicit one (see Bonnet &
Mukerjee, 1996 and also Fudoli et al., 1999). Equation (24) is employed in its original form
giving the tangent operator )(C 1sp +ε∆ . For von Mises yielding criterion this tangent operator

is given in a closed form, allowing therefore the direct application of equation (24). For other



criteria with more complex representation in the stress space, an iterative process must be
provided to achieve implicitly the operator )(C 1sp +ε∆ .

6. EXAMPLE

The example chosen to illustrate the non-linear reinforced BEM model compares values
achieved by using the numerical procedure with experimental results. This example is
appropriate to show the stability of the numerical technique and also to emphasise that the
non-linear criterion chosen can represent the reinforced concrete beam behaviour.

The analysed reinforced concrete beam is shown in Figure 1, where its sizes are given
together with the embedded longitudinal and shear reinforcements. The load F, also shown in
Figure 1, is gradually applied starting from zero to its maximum value

25 s/cm.kg10x5.13F = . The adopted discretization is displayed in Figure 2, in which
boundary and steel bars elements are displayed. The material properties assumed for this
analysis are the same ones evaluated at our laboratory by Martinelli & Takeya, (1974):

)s.cm/(kg10x0.2E 28
co = , )s.cm/(kg10x96.1E 29

co = , 2.0=ν , )s.cm/(kg10x92.3f 25
c =  and

)s.cm/(kg10x3.0f 25
t = . The concrete Young's modulus adopted was computed by finding the

average value between the initial one and the value corresponding to the maximum
compression strain, i.e. when the strain reached 2/1000 in compression. For this case, we have
chosen the Drucker Prager yielding surface to represent the concrete matrix behaviour, while
the steel bars were assumed to be elastic. The criterion parameters, )s.cm/(kg10x44.5c 24=
and rad03.1=φ , were established from the experimental values given above. No relative
displacement was assumed between steel bars and concrete matrix.
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Figure 1: Reinforced concrete beam, geometry and loading (values in mm)
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Figure 2: Boundary and steel bar discretizations.

The numerical displacements computed at the central node are compared with
experimental values in Figure 3. Although, the criterion parameters have been defined directly
from particular samples collected from the concrete mass prepared to build the beam, the final



results compare well with the numerical solution. It is possible to see that some differences
between the experimental and numerical curves appeared after the cracking point. The beam
experimented in the laboratory shows a more abrupt stiffness reduction after cracking. The
adopted model for the numerical analysis does not show this reduction. In average, the chosen
model can represent well the overall beam behaviour. The evolution of the internal effective
stresses is given in Figure 4, for some selected load levels. Although no comparison with
other numerical model has been made, the results exhibit an expected distribution of effective
stresses over the beam. The same conclusion can be made on the longitudinal and shear stress
distributions illustrated in Figures 5 and 6, respectively. It is also important to verify the shear
stresses along the contact to confirm the no debonding assumption (Figure 7). Practically, the
same results have been obtained following the two integration schemes discussed in this paper
to treat the non-linear system of equations.
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Figure 3: Loading versus central displacement
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Figure 4: Internal effective stress level for selected loads
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Figure 5: Normal stress distribution (horizontal component)
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Figure 6: Shear stress distribution for selected loads
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Figure 7: Contact shear traction between concrete and steel
7. CONCLUSION



A particular model to analyse composite material with emphasis to non-linearities over the
matrix material has been proposed. The model was developed for any kind of internal fibbers
combined with elasto-plastic material matrix only. The boundary element method was used to
model the non-linear domain, while simple truss bas finite elements have been adopted to
simulate the fibbers. Two procedures used to integrate the non-linear relations have been tested
and confirmed the good performance of BEM for this kind of problems. The model was taken to
analyse a reinforced concrete beam and the main results compared with the experimental values.
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