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Abstract. This paper is concerned with the time integration of the equations of mo-

tion of nonlinear multibody systems discretized using the �nite element metho d. A time-

discontinuous Galerkin scheme is use d to obtain the response of the system. The Lagrange

multiplier technique is used to enforce the kinematic constraints among the bodies. The

formulation uses Cartesian c oordinates to represent the position of each body with re-

spect to an inertial system. The scheme is c ast in a predictor-multicorrector form, which

provides unconditional stability, third order accuracy and high frequency numerical dissi-

pation. An adaptive time-stepping algorithm is used to select the proper time step size to

accurately solve the system of equations. Numeric al examples are presented to demonstrate

the performance of the algorithm.

Keyw ords: Nonlinear m ultibody systems, Structural Dynamics, Time-discontinuous

Galerkin.

1. INTR ODUCTION

In structural dynamic analyses of nonlinear constrained m ultibodies, the problem of

solving for the transient response of the systems deals with dynamic equilibrium equations

written in the form

M �u(x; t) +N [u(x; t); _u(x; t)] = P [u(x; t); t] ; (1)

associated with kinematic constrain ts

C[u(x; t)] = 0 ; (2)

with initial conditions

u(x; t0) = u0 and _u(x; t0)] = v0 ; (3)



whereM is the consistent �nite element integrated mass matrix, N is the nonlinear inter-

nally resisting forces in the structure, which may depend on displacements and velocities,

and P is the externally applied forces that vary in time, generally, but which may also

depend on the displacements. The constraints that connect each body to one another

are represented in Eq. (2) by C, a set of holonomic, or more speci�cally, scleronomic or

stationary, equality constraints.

High frequencies are present in the system due to the geometric, displacements and

rotations, nonlinearities. Moreover, the kinematic constraints introduce in�nite frequen-

cies into the system, which are of a purely numerical origin, i.e, there is no physical

meaning related to them. Thus, one has to be extremelly cautious on selecting a time

integration scheme to solve for the response of the system. The chosen scheme must be

able of handling not only the high, but also the in�nite, frequencies present in the numer-

ical response. The widely accepted Newmark scheme (Newmark, 1959), despite its good

characteristics of accuracy and unconditional stability, cannot be used onto the solution

of the class of problems represented by Eqs. (1), (2), and (3). The reader if referred to

Cardona (Cardona & Geradin, 1989) for details. A time integration scheme that can

effectively be used on the solution of the equations of motion of multibody systems is the

time-discontinuous Galerkin. Using the natural framework of the second-order hyperbolic

equations, instead of relying on converting the equations to a �rst-order symmetric hy-

perbolic form, which is actually not always possible, Hulbert (1989) developed time and

space-time discontinuous Galerkin �nite element methods to solve structural dynamics

and elastodynamics problems. The resulting systems of equations are larger than the

original ones, and fully coupled, which increases the computational costs of the solutions.

Nevertheless, the scheme may be cast in a predictor-multicorrector form, which alleviates

the high computational costs of solving the fully coupled systems, maintains the high

order of accuracy and unconditional stability of the original scheme, and improves its

characteristics of high frequency numerical dissipation.

The work herein presented deals with an adaptive time-stepping procedure based on

a time-discontinuous Galerkin scheme to solve for the transient response of nonlinear

constrained multibody systems. A single-�eld formulation is used with displacements

approximated as a quadratic function. Numerical examples are presented and the features

of the algorithm are discussed.

2. A TIME-DISCONTINUOUS GALERKIN FINITE ELEMENT

This work concerns the analysis of nonlinear constrained multibody systems discretized

using the �nite element method. The formulation uses Cartesian coordinates to represent

the position of each body with respect to an inertial frame. The Lagrange multiplier

technique is used to enforce the kinematic constraints among the various bodies. This

approach allows a modular development of �nite elements to represent a variety of kine-

matic constraints, so that general multibody con�gurations can effectively be modeled.

The resulting systems of equations are differential-algebraic in nature. Such systems are

stiff due to the presence of high frequencies in the elastic members, and also the in�nite

frequencies associated with the kinematic constraints. In reality, no mass is associated

with the Lagrange multipliers degrees of freedom resulting algebraic equations coupled to

the differential equations of the system.

Consider (Hulbert, 1989) a partition of the time domain I = (0; T ) in the form 0 =

t0 < t1 < � � � < tN = T with corresponding time steps �tn = tn � tn�1 and intervals



In = (tn�1; tn). The �nite element interpolation functions for the trial displacements are

Sh = fuh 2
N[

n=1

(P 2(In))
neq
g (4)

where P 2 stands for second-order polynomial and each member of Sh is a vector consisting

of neq quadratic functions on each time interval In. By construction, the interpolation

functions are continuous within each time interval and may be discontinuous across time

slabs. To enforce the continuity across time intervals a temporal jump operator

[w(tn)] = w(t+n )� w(t�n ) (5)

where

w(t�n ) = lim
�!0�

w(tn + �) (6)

is used. The displacement weighting function space is identical to the trial displacement's.

The statement (Hulbert, 1989) of the time-discontinuous Galerkin �nite elementmeth-

od for the single-�eld formulation, applied to the ordinary differential equations associated

with the semidiscrete form of linear elastodynamics is:

Find uh 2 Sh such that for all wh
2 W h

Z t�n

t+
n�1

[ _wh
� (M�uh + C _uh +Kuh � F )]dt +

_wh(t+n�1) �M [ _uh(t+n�1)� _uh(t�n�1)] + (7)

wh(t+n�1) �K[uh(t+n�1)� uh(t�n�1)] = 0:

In Eq. (7), n = 1; 2; � � � ; N , where N is the number of time intervals. Variables uh and

wh are, respectively, displacements and weighting functions, _uh and �uh are, respectively,

velocities and accelerations. The last two terms on the left-hand side weakly enforce the

initicial conditions for each time interval. These jump terms are stabilizing operators that

have the effect of up-winding information with respect to time (Hulbert, 1989). Also,M ,

C and K are the mass, damping and stiffness matrices, respectively, and F is the force

vector. Since the displacements are interpolated as quadratic functions, the resulting

system of equations is three times larger than the ones solved by commonly used semidis-

crete methods. To circumvent the high computational cost of solving the fully coupled

equations, the system is cast in a predictor-multicorrector form, which maintains the

characteristics of high order accuracy and unconditional stability of the scheme, besides

improving its high frequency numerical dissipation capability.

3. THE ADAPTIVE TIME-STEPPING PROCEDURE

The response of constrained multibody systems often rapidly varies in time, indicating

the need for an automated time step size adaptation procedure. Moreover, in modern

structural dynamic analysis, in general, it is convenient that a time integration scheme

allows automatic time step size control.

An adaptive time-stepping procedure, based on a time-discontinuous Galerkin scheme,

for selecting the proper time step size is presented by Li & Wiberg (1996). They use a

two-�eld formulation, namely the P1-P1 formulation (Hulbert, 1989), which interpolates

displacements and velocities as piecewise linear funtions. In the study herein developed a



single-�eld formulation is used with displacements approximated as a quadratic function.

The resulting systems of equations are smaller than the ones resulting from a two-�eld

formulation with the advantage of improved accuracy characteristics (Hulbert, 1989).

The time adaptive algorithm presented by Li & Weiberg (1996) is applied to con-

strained nonlinear multibody systems. For the automatic time step size control the rela-

tive error at a time tn is de�ned as

�n =

�����E(tn)� E(t)

E(t)

����� (8)

where E is the total energy, E(�) = K(�) + V (�), i.e, the sum of kinetic and potential

energies, and E(t) is a reference energy of the system. It is expected that the relative

errors satisfy the condition

�n � �tol ; (9)

where �tol is a speci�ed error tolerance. If requirement in Eq. (9) is not satis�ed, a time

step re�nement is performed. The corresponding solution is rejected and given that the

convergence rate for the algorithm is O(�t3), the new time step size that will satisfy the

error tolerance criterion is calculated, (Li & Wiberg, 1996) and (Wiberg & Li, 1994), as

�ttoln =

 
�t �

tol

�n

!1=3
�tn ; (10)

where �t � 1:0 is a reducing factor used to avoid the new predicted time step size being

rejected. On the contrary, if the calculated error is much smaller than the tolerance �tol,

i.e,

�n <  �tol (11)

the solution is accepted but the time step size may be increased according to Eq. (10)

when the criterion in Eq. (11) is satis�ed for a certain sucessive number of time steps. In

Eq. (11)  is a number much smaller than 1:0.

4. NUMERICAL EXAMPLES

4.1 Simple Pendulum

Consider a simple pendulum problem modeled as a point mass m and a massless

rigid link of length `. Two degrees of freedom ux and uy, respectively, vertical and hor-

izontal displacements, describe the position of the mass m. Only gravity acts upon the

system. Through an augmented Lagrange multiplier technique a constraint equation,

namely C = u2x + u2y � `2 = 0, that guarantees the constant length ` of the pendulum

is added to the system. Such a constraint introduces an in�nite frequency into the sys-

tem of equations, which then becomes prone to numerical instabilities and oscillations

of a purely numerical origin. Cardona & Geradin (1989) have shown the impossiblity

of solving this problem with the Newmark time integration scheme. Nevertheless, the

time-discontinuous Galerkin scheme ef�ciently solves this nonlinear constrained problem

as shown by Damilano (1993).

Despite the reduced number of degrees of freedom and its rigid body nature, this

problem is studied aiming the possibility of applying the technique herein described to

more representative multibody systems, e.g., problems with large number of degrees of



freedom, several kinematic constraints and nonlinear elastic members. For the present

study m = 1:0 kg, ` = 0:5 m, g = 9:81 m/s2, and the initial conditions are ux = 0:5

m, uy = _ux = 0:0, _uy = �1:695 m/s. The solution is calculated for 50 seconds and the

numerical results are in excellent agreement with their analytical counterparts. Initially

solved without adaptivity, i.e., with a constant �t, a large increase in relative energy error

is observed during the �rst 10 seconds of the solution, as shown in Figure (1). In fact,

it increases about 3 orders of magnitude. This error keeps increasing during the compu-

tations of the solution, however, at a low gradient in the instants that follow the initial
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Figure 1: Relative energy error for the nolinear pendulum with constant time step.
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Figure 2: Rate of convergence at time t = 10:0 seconds for the nonlinear pendulum.

10 seconds. The inherent high frequency numerical dissipation of the time-discontinuous

Galerkin method completely eliminates the undesired high frequency numerical oscilla-

tions. This numerical dissipation guarantees the stability of the scheme. However, it also

implies the energy decaying results observed. A conventional analysis of the scheme based



on the characteristics of the ampli�cation matrix (Hughes, 1992), for linear systems, re-

sults that the scheme is third-order accurate. However, there is no guarantee the same

accuracy will be observed with nonlinear constrained systems. To assess the order of accu-

racy of the scheme applied to the nonlinear pendulum, the results at time t = 10 seconds

were used to calculate the errors of the solution as functions of the time step size. The

results are presented in Figure (2), where u, v, and E stand for displacements, velocities

and total energy, respectively. In fact, the scheme is third-order accurate. However, there

is no guarantee that the same high order of accuracy will be maintained by the scheme

in the solution of different nonlinear problems. The time adaptive algorithm predicts the
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Figure 3: Horizontal accelerations for the simple pendulum.

solution for two different error tolerances, 1:0x10�05 and 1:0x10�04, with �t = 0:95 and

 = 0:6 for both cases. Figure (3) shows the smooth results for horizontal accelerations at

the �rst second of calculations. There are no high frequency numerical oscillations present

in the response. The solution obtained without time adaptivity falls on top of its ana-

0 5 10

Time (s)

1.0E-6

1.0E-5

1.0E-4

1.0E-3

R
e
la
ti
v
e
E
n
e
rg
y
E
rr
o
r

tol = 1.0E-05

tol = 1.0E-04

Figure 4: Error in energy for the simple pendulum.

lytical counterpart. The adaptive time-stepping routine allows time step changes right at

the very �rst time step of integration, which explains the minor difference around t = 0:1

seconds. However, the scheme is capable of recovering from that slight error and brings

the solution to coincide with the exact one. The estimated errors in energy for the initial

10 seconds of computation are presented in Fig. (4). It is important to remember that

the numerical dissipation inherently present in the scheme results a total energy decay.



Evidently, it turns out to be impossible for the algorithm to use the same reference energy

E(t) in Eq. (8), throughout the entire computation of the solution. Thus, the calculation

of the response starts using E(t) equal to the initial total energy of the system. Then, if

at a given time step the convergence criterion in Eq. (9) is not satis�ed the time step size

will be reduced. At each time step that �t has to be reduced, this process goes on up to a

maximumnumber of repetitions, or until �t reaches a speci�ed minimumvalue. In either

case, if the error is not larger than 1:1�tol, the solution is accepted but the new energy of

reference is the average between the reference energy at the previous time step and the

energy computed at the present time step. Results for both analyses show the energy

errors bounded by their respective limits. In both cases, the maximum value allowed for

the time step size is �t = 5:0x10�02. A spectral analysis of the solution for constant �t

showed that �t = 3:7x10�02 is the largest time step size that could accurately integrate

the equations of motion. Figure (5) shows that the algorithm keeps the time step size

within the necessary limit for accuracy. During the entire period of the computations the
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Figure 5: Time step size variation for the simple pendulum.

kinematic constraint, which guarantees the constant length of the pendulum, is satis�ed

at the order of machine accuracy, i.e., 1:0x10�15. The solution without adaptivity used

223 seconds of CPU time and 10000 time steps. The adptive algorithm with the error

tolerance 1:0x10�05 used 57% of the computation time above and reduced the number of

time steps to 4341. Relaxing the error tolerance to 1:0x10�04 results a reduction in time

of computation to 36% of the computation time for a constant �t, further reducing the

number of time steps to 2195.

4.2 Slider Crank Mechanism

In order to assess the capability of the algorithm to overcome problems with singular-

ities, a slider crank mechanism is analyzed. Figure (6) shows the mechanism, which for

speci�c geometric con�gurations, and depending on the solution scheme to be used, rules

out the numerical solution. For instance, if the method of coordinate partitioning is to

be used, coordinates �1 and �2 are related as

tan �1 =
1

tan �2
2

: (12)

Evidently, for speci�c positions of the masses, such as when �1 = 180 deg. and �2 = �180

deg., and �1 = 0 deg. and �2 = 180 deg., the solution will break down since Eq. (12)



cannot be solved for such con�gurations. The mechanism consists of two equal masses

m1 = m2 = 1:0 kg, connected by means of two massless rods of equal length `1 = `2 =

` = 1:0 m. Mass m2 is constrained to frictionlessly move on a horizontal line such that

Figure 6: Slider crank mechanism.

the distance d remains equal to zero, which is the kinematic constraint imposed onto the

system. The only force acting upon the system is gravity g = 9:81 m/s2. The kinematic
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Figure 7: Relative energy error for the slider crank mechanism with constant time step.

constraint is expressed as d = `[cos �1+ cos(�1+ �2)]. An augmented Lagrange multiplier

technique is used to enforce the constraint upon the system. Initial conditions are �1 = 45

deg., �2 = 90 deg., and _�1 = _�2 = 0. The numerical results do not present any sort of

high frequency vibration content, falling on top of their analytical counterparts. Once

again, the relative energy error shows an energy decaying in the response, as pictured in

Fig. (7). This energy decaying characteristic of the time-discontinuous Galerkin scheme

results from its capability of dissipating any spurious high frequencies that may arti�cially

be introduced into the system. As shown in the literature (Cardona & Geradin, 1989)

accelerations of constrained systems are the responses most sensitive to spurious high

frequencies oscillations and instabilities. Horizontal accelerations for masses m1 and m2

are depicted in Fig. (8). The results coincide with the analytical solutions and, as in the

previous example, the in�nite frequencies introduced into the system by the kinematic

constraint, are completely dissipated. The error tolerance in energy for the analysis is

�tol = 1:0x10�05. Since the limit tolerances are 1:1 �tol and 0:6 �tol, respectively for the

maximum and minimum tolerances, Fig. (9) shows the relative energy error oscillating

between the bounds de�ned by such limits. Finally, the variation in time step size along



the time integration process is presented in Fig. (10). The maximum size allowed for �t is

2:0x10�01. It is clear, from Fig. (10), that the adaptive algorithm takes that value for �t,

after the �rst few steps of calculation. However, it rapidly comes back to a much smaller
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Figure 8: Horizontal accelerations for masses m1 and m2.

value and oscillates within the limits for accurately obtaining the response for the system.

It can still be seen that the smallest values for �t coincide, in time, with the regions where

the accelerations curves present the steepest gradientes. Since accelerations and velocities,
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Figure 9: Relative energy error for the slider crank mechanism with �tol = 1:0x10�05.

along with displacements , either linear or rotational, play an important role in the time

integration solution, the variation in time step size emphasizes the accuracy characteristics

of the algorithm, i.e., it reduces the time step size where needed and enlarges it otherwise.

5. CONCLUSIONS

An adaptive time-stepping algorithm is applied to a time-discontinuous Galerkin

scheme on the solution of nonlinear constrained multibody systems. The resulting sys-

tems of differential-algebraic equations are larger than the original ones, fully coupled,

and prone to high frequency oscillations and instabilities of a purely numerical origin.

The inherent high frequency numerical dissipation of the scheme completely eliminates

the undesired instabilities. A single-�eld formulation of the time-discontinuous Galerkin



�nite element scheme using quadratic interpolation functions produces coupled systems

of equations that are three times larger than the original ones. The resulting systems are

solved in a predictor-multicorrector form, which alleviates the high computational cost of

solving the fully coupled systems, and improves the scheme's characteristics of accuracy

and high frequencies numerical dissipation. The total energy of system is used as error
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Figure 10: Temporal time step size for the slider crank mechanism.

measure and a time step adaptation routine is employed. The adaptive algorithm changes

the time step size maintaining a priory speci�ed accuracy for the solution. It was observed

that in some analysis a signi�cant reduction in computational cost was obtained. The

scheme is not sensitive to con�guration singularities that may occur during the motion of

the structural system.
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