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Abstract A theoretical analysis of the extrusion of a circular tube into a square shape is de-
veloped. A computational model for the shell is proposed in order to derive a closed-form
solution for the axial load necessary to perform the extrusion. The most significant deformation
components are discussed.
The plastic deformations of the tube are caused by the change in the curvature in the circum-
ferential direction. In the axial direction, the deformation is associated to non linear effects.
The shear effects are present but they have not been taken into account because they represent
a small fraction of the total energy involved in the process.
A closed-form solution is derived for the force necessary to extrude the tube. This solution is
presented in a dimensionless form relating the force to the geometric and mechanical parame-
ters of the process.
The solution is compared to the results of an axis-symmetric crushing of a tube which is related
to the present problem. Application of the solution to the design of energy absorbing devices is
discussed.
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1. INTRODUCTION

The study of devices for energy absorption specially during impact situations has been
addressed by several researchers. In the case of tube crushing we can point out important
contributions from Norman Joneset al.(1984) and Wierzbickiet al.(1983). For the case of tube
splitting, Strongeet al.(1983) have developed simplified models which allowed for an analytical
expression of the forces involved.

For our case another mechanism of dissipation is proposed: the extrusion of a circular tube.
A tube of radiusR is extruded against a die of total lengthl in such a way to produce a square
tube, having a corner radiusr0. Fig. 1 shows the process.

The configuration of the tube changes continuously along the length of the die. We assume
that the deformations are restricted to the length of the die, and because of that the region is
called region of deformation.

The configuration of the tube in the zone of plastic deformation involves lines where the
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Figure 1: The extrusion process of a square shape from the circular tube

curvature is not continuous. Consequently, we can say that the hinge lines separate two regions
of continuous curvature.

The rate of dissipation of the internal energy consists mainly of the following components:
a) energy resulting from the hinge propagation ; b) energy resulting form a continuous change
of curvature ; c) axial deformations introduced by changing of the line elements. In addition,
the deformations in axial and circumferential directions are considered to be independent. Thus,
the problem in both directions is considered to be uncoupled.

The statement of the global equilibrium is expressed by the balance equation between the
rate of the work of external forces and the rate of the internal work. In symbols:

Fextv =
dEint

d�
+ Ffv (1)

whereFext represents the external force applied to the tube,v represents the process velocity
anddEint

d�
is the rate of internal work and� is the time. The statement of equilibrium should also

include a term relating the external dissipation of energy due to the friction forces developed in
the deforming zone through the die surfaces, for the non-ideal case. Consequently,Ff represents
the friction forces.

2. MECHANISM OF DEFORMATION

We assume a rigid-perfectly plastic idealization of the material with a stress-strain rate
relation represented analytically by:

� = �0sign _� (2)

where�0 is the yield stress and_� is the strain rate. The rigid-perfectly plastic model is conve-
nient in working with problems involving large plastic deformations of metal structures. The
elastic strains are a small fraction of the total strains and can be disregarded.

The assumptions adopted for the present modeling can be summarized as: a) For the rings,
the model involves continuous deformation and localized deformations at the hinge line ; b) The
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bending moments are assumedM�� = M0 ( fully plastic bending moments, i.eM0 = �0t
2

4
) ; c)

The axial forces acting on the generators in the deforming region are equal toNxx = N0, i.e,
N0 = �0t, where the stresses are uniform throughout the wall thicknesst ; d)The internal energy
dissipated due to the shearing and twisting are not taken into account ; e) The inextensibility of
the rings is adopted��� = 0 ; f) The axial bending moments are assumed negligibleMxx = 0

3. GENERAL EQUATIONS

For a shell element , the variations of the energy densityeint may be expressed by:

eint =

Z
fM��Æ��� +N��Æ���gdA (3)

where:M�� are the bending moments,N�� are the in-plane forces,��� represents the variation
of curvature during the process ,��� contain the strain components anddA the element of area.

4. GEOMETRY AND DISPLACEMENTS

The symmetry of the deformations, as observable in Fig. 1 permit us to restrict the analysis
to one eighth of the circumference. Fig 2 shows the deformed configuration of a quarter of
circumference superimposed to the initial sectional configuration. The deformed configuration
changes along the axial position.

For the proposed geometry of deformation, we can express the current position of any point
and construct a displacement functionw = w(x; �). The displacement function is constructed
observing:

� The inextensibility of the rings ;

� The elements are displaced in such a way to produce two different curvatures, depending
on the original angular position with respect to the hinge point.

These postulates have been used in the construction of the displacement function in terms
of the coordinates and geometrical parameters(R; r0) as sketched in Fig 2. In the figure,H
denotes thehinge point, (P;Q) are arbitrary points with locations before and after the hinge
point. Their current location after deformation is(Pc; Qc). �h is the angular position of the
hinge and�0 is the angular position relative to the hinge position. The figure is self-explanatory.

5. DISPLACEMENTS

The displacement functionw can be expressed in terms of the initial angular position�,
and the magnitude of the residual radiusr0, and it takes the form:

w2

r2
0

=f
x

l

�

4
(R� r0) + [R�

x

l
(R � r0) cos(�

0)� R cos(�)g2 +

f
x

l

�

4
(R� r0) + [R�

x

l
(R � r0) sin(�

0)� R sin(�)g2 (4)

for points satisfying the condition:

0 � � � �h

Similarly, an expression for those points whose original angular position� are larger than
the hinge angular coordinate�h can be found. For those points, the displacements are described
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Figure 2: The geometrical parameters used to characterize the displacement function

by:

w2

r2
0

=f
x

l

�

4
(
R

r0
� 1) + [

R

r0
�

x

l
(
R

r0
� 1) cos(�0)�

R

r0
cos(�)g2 +

f
x

l

�

4
(
R

r0
� 1) + [

R

r0
�

x

l
(
R

r0
� 1) sin(�0)�

R

r0
sin(�)g2 (5)

and they satisfy the condition:

�h � � �
�

4

The parameter�0 is defined by:

�0 =
R

r(x)
(� � �h)

wherer(x) = [R� x

l
(R� r0)] and�h corresponds to:

�h =
x

l

�

4
(R� r0)

R

Fig 3 presents the displacements along the die in terms of the angular position for the case
R

r0
= 10.

6. ENERGY IN THE DEFORMING ZONE

The computational model permit us to separate the energy calculations associated with the
generators a part from the energy calculations associated with the rings.

6.1 Deformation of the rings

The energy dissipated during the deformation of the rings is computed in terms of the
Dissipation Function, which involves two different processes.
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Figure 3: The displacement function of the generators

We can define a function to analyze the dissipation which occurs in the region of continu-
ous dissipation. Thus, associated with the continuous dissipation region, we can construct the
continuous dissipation function, here denoted asCdf , and defineCdf by:

Cdf =

Z
1

0

M0l���d(
x

l
)

The integration produces:

Cdf = M0l
�1

(R� r0)
f
�
�

4

+ ln[1�
�
�

4

]g (6)

valid for the case:

0 � � �
�

4

(R� r0)

R

Whereas for the rest of the eighth of the circle:

Cdf = M0l
�1

R
f1 +

R

(R� r0)
ln(

r0

R
)g (7)

valid for the case:

�

4

(R� r0)

R
� � �

�

4

We say that the discontinuity in the curvature of the generators defines the dissipation of
energy along a line, the hinge line. And different from the continuous dissipation which extends
over a region, the hinge dissipation is localized. Thus, associated with the hinge dissipation,
we can construct the hinge dissipation function, and denote it byHdf . The hinge dissipation
function Hdf is:

Hdf =

Z
1

0

M0���Æ(
x

l
�

x

l
j�)d(

x

l
)
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whereÆ() corresponds to the Dirac Delta Function.
For the hinge dissipation functionHdf we can write:

Hdf = M0l
1

R
f

�

4

[�
4
� �]

g (8)

valid for the case:

0 � � �
�

4

(R� r0)

R

We can study the energy dissipated by each generator inside the deforming region plotting
the continuous dissipation functionCdf combined with the hinge dissipation functionHdf . Fig4
shows the curves of functions involved and the total dissipationRdf , as the sum ofCdf andHdf .
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Figure 4: The components of the dissipation function of the rings.

6.2 Energy of continuous deformation

For each generator�, at any axial positionx
l
, the function d�

ds
represents the change of

the relative rotation that has been done over the section between the entrance position until the
current position.Thus, computing first the work done over all sections inside the deforming zone
for any generator, and taking into account all generators afterwards, we get:

Wcont =

Z �

4

0

Cdfd�

whereM0 represents the fully plastic bending moment of the sections and the subscriptcont is
used to emphasize the meaning of the expression.

Performed the integration we get the final result:

Wcont =
1

2
M0l

�

4

1

R

(R� r0)

R
(9)

that representsthe total energy dissipated in the deforming zone through the continuous dissi-
pation mechanism.
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6.3 Energy of localized deformation

The other component of the dissipation process is present at the hinge points. Thus, the
work done over each element depends on the value of the current curvatureimmediately before
the axial position where the hinge appears. Not all generators will have a hinge point. The
generators that have hinge point are those ones whose original angular coordinate� is in the
range:

0 � � �
�

4

(R� r0)

R

In order to take into account the work done over all elements on the hinge line, and all
generators, the integral has to be calculated:

Whge =

Z
�max

0

Hdfd�

where the subscripthge has been used to remember us that this equation calculates the work
dissipated through the hinge mechanism.

The result of the integration produces:

Whge = M0l
�

4

1

R
ln(

R

r0
) (10)

6.4 Total energy dissipated

We can combine the partial contributions due to the continuous deformation and the hinge
process. Thus, we can add the expression of Eq. 9 and Eq. 10 in order to get the total work. The
energy dissipated for the complete ring can be expressed by:

W

l
jringR

�0t2
=

�

2
f
1

2
(1�

r0

R
) + ln(

R

r0
)g (11)

where we have taken care of the total circumference and we have substituted the value of the
fully plastic bending momentM0.

7. DEFORMATION OF THE GENERATORS

In order to calculate the force necessary for the extrusion, we need to describe the defor-
mation of the generators in the deforming zone. We need to compute the energy dissipated
during the extrusion. Since we assume that only direct tensile stresses are present, then shear
deformations are not accounted for.

From the expression of the strain in the axial direction of deformation, and admitting no-
stretching of the generators, the deformations become expressed only by the non-linear terms.
Such approximation seems to be reasonable since there is the influence of the friction forces
along the length of the die during the extrusion process.Thus:

�xx =
1

2
[(
@(yc)

@(x)
)2 + (

@(zc)

@(x)
)2] (12)

The corresponding values of the partial derivatives are:
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@(yc)

@(x)
=

r0

l
(
R

r0
� 1)[(

�

4
� 1)] (13)

being:

0 � � � �h

For the remaining of the cross-section:

@(yc)

@(x)
=

r0

l
(
R

r0
� 1)[

�

4
� cos(�0)�

R

r0
(� � �

4
)

[ R
r0
� x

l
( R
r0
� 1)] sin(�0)

] (14)

being:

�h � � �
�

4

Similarly for the other partial derivative:

@(zc)

@(x)
= 0 (15)

for the case:

0 � � � �h

and

@(yc)

@(x)
=

r0

l
(
R

r0
� 1)[(

�

4
� sin(�0) +

R

r0
(� � �

4
)

[ R
r0
� x

l
( R
r0
� 1)] cos(�0)

(16)

for the case:

�h � � �
�

4

The work done over the generators of one eighth of circumference along the die is expressed
in a dimensionless form by:

Wgenl

�0t[r0(
R

r0
� 1)]2

=

Z
1

0

Z �

4

0

1

2
[f 2(�0;

x

l
;
R

r0
) + g2(�0;

x

l
;
R

r0
)]d�d(

x

l
) (17)

where(f; g) are dimensionless terms extracted from the strain measure.
The inner integral can be evaluated analytically and it is useful in the understanding of the

dissipation along the die. The variation of inner integral in terms of the axial position for several
reduction ratioR

ro
is presented in Fig 5. The integral of Eq. 17 can be found analytically and the

numerical variation in terms of the reduction ratioR
ro

= f10; 20; :::; 50g is presented in Fig 6

7. CONCLUSION
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Figure 6: The energy dissipated in terms of the reduction ratio

The contribution from the generators and rings to the total energy dissipated is obtained
from Eq. 11 and Eq. 17. The parameter l is determined via the minimization of the total energy,
which afterwards is used to find the expression of the force required. The force depends on the
reduction ratio. For small reduction ratios it can be approximated by:

F

�0t2
= 2�2f

1

2
(1�

r0

R
) + ln[

R

r0
]g (18)

where F corresponds to the total force applied.
The mean crushing force of tubes developed by Wierzbicki et al. corresponds to:

F

�0t2
= 9:56(

C

t
)
1

3

where C represents the side of the square tube, t its thickness.
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For the case of the dynamical mean crushing force of circular tubes, Abramowicz et al.
obtained the expression:

F

�0t2
= 31:33(

R

t
)
1

3

We can conclude that the extrusion process is an intermediate process in terms of its ca-
pacity to absorb energy and it could be used efficiently as device for absorbing energy during
impact. For other cases, additional information is available in the references.
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