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Abstract. The non-linear dynamics of a pin-ended elasto-plastic beam is discussed in this
contribution. Ideal plasticity is in focus. Free and forced responses are considered. An iterative
numerical procedure, based on the operator split technique, is developed. This work shows that
jump phenomenon and sensitivity on initial conditions imply that the system response may
become unpredictable even when a periodic response is expected. Chaotic motion is also
associated with the unpredictability of the beam response.
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1. INTRODUCTION

This contribution investigates the non-linear dynamics of a pin-ended elasto-plastic beam.
The beam is modeled by the Symonds’ model where a pin-ended beam with length 2L, and
uniform rectangular cross section of area A = bh’, is represented by two rigid links, each of
length L, joined by an elasto-plastic element. The two rigid bars are assumed to have mass per
unit length ρ, the same as for the uniform beam (Shanley, 1947). The beam model is depicted in
Fig.1.

An iterative numerical procedure, based on the operator split technique, is developed.
Numerical simulations discuss the free and forced responses of the beam. Some dynamical
characteristics of the beam imply that the system response may become unpredictable. Chaotic
motion is one of these and it may occur for some parameters. There is also jump phenomenon
which implies that small changes in force amplitudes cause great variations in the steady state
responses.



Figure 1 - Elasto-plastic Beam.

2. MODEL FOR AN ELASTO-PLASTIC BEAM

Geometric considerations permit to define the relation between the cell position, a, and the
angle of rotation, ϕ, and also the semi-extension of the cell centerline, e, and the semi-extension
of each flange, e1 and e2,
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The constitutive equation for ideal plasticity is given by,
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where sign(σ) = σ / |σ|. σ is the one-dimensional stress, ε and εp is the total and plastic one-
dimensional strain, respectively. γ represents the rate at which plastic deformations take place. E
is the Young modulus. The yield function, h(σ), the Kuhn-Tucker conditions and the consistency
condition are given by (Savi & Pacheco, 1997):

yh σσσ −=)(

0≥γ ,     0)( =σγh ,     0)( =σγh�    if   0)( =σh . (3)

Here, σy is the yield stress.
The force and moment resultants in the cell are taken by considering the same relations of

those of a sandwich beam, consisting of two bars each in simple tension or compression
(Symonds & Yu, 1985). Hence,
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where N1 and N2 are the forces on each flange. Assuming that the total strain on each flange is
obtained by dividing the semi-extension by the semi-length of the beam, and the area of each
flange is a half of the beam cross section area, hence,
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where p
ie  is the plastic semi-extension on each flange.

Governing equations of the model are obtained by establishing the equilibrium of moment
on the half beam. Neglecting the inertia of the elasto-plastic element, and assuming a linear
viscous external dissipation,
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where 3/3 Lρµ =  and c is the linear viscous dissipation parameter. N and M are given by
equations (1,5). Now, consider the following definitions,
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Here AN yy σ=  and 2/hNM yy = . Denoting the non-dimensional time derivative by
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Actually, the space of state variables includes more variables than y1 and y2 (Poddar et al.,
1988), however, the analysis is developed on a subspace of dimension 2 (Savi & Pacheco, 1997).
The numerical solution procedure here proposed uses the operator split technique (Ortiz et al.,
1983). First, the equations (8) are integrated using any classical scheme, like fourth order Runge-
Kutta, assuming that the variables n and m are known parameters. n and m are evaluated by
considering an elastic predictor step (trial state), where plastic variable, εp, remains constant from
the previous time instant. The next step of solution procedure consists on a plastic corrector step
where the feasibility of trial state is evaluated using the return mapping algorithm (Simo &
Taylor, 1985). An iterative process takes place until the convergence is achieved (Savi &
Pacheco, 1997).



2. FREE VIBRATIONS

In this Section, one discusses the free response of the elasto-plastic beam. This is done by
letting f(τ) vanish in the equations of motion (8). In all simulations, one has taken L = 0.10m, b =
0.02m, h’ = 0.04m, h = 0.68h’, ρ = 0.216 kg/m, E = 120 GPa, σy = 0.3 GPa (Poddar et al., 1988).
The procedure converges with time steps less than ∆τ = 2π / 1000Ω.

To illustrate the free response, one considers a system with no external dissipation (c0 = 0).
Figure 2 presents results from simulations in the form of phase portrait. Different initial
conditions cause different plastification of the cell and, as a consequence, alter the position of the
equilibrium points in phase space.
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Figure 2 - Phase Portrait.

The beam response presents sensitivity on initial conditions. Poddar et al. (1988) show the
fractal basin boundaries of the system under free vibration. This conclusion was used to explain
the discrepancy among some finite element results shown in Symonds & Yu (1985). Figure 3
shows the steady state envelope of maximum and minimum angular displacement, y1, for
different initial conditions. A null initial angular velocity is considered. Figure 3a considers no
external dissipation (c0 = 0), and reproduces the result obtained by Symonds & Yu (1985). It
should be pointed out that a global change on the response occurs when initial conditions are on
the range from 0.086 to 0.092. By considering an external dissipation, asymptotic behavior is
expected. Hence, the response tends to be a closed curve in phase space, and the envelope
becomes a line. When c0 = 0.2, global changes are characterized by jumps (Fig.3b). For high
values of this parameter, for example c0 = 1.5, global changes do not occur anymore (Fig.3c).
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Figure 3 - Steady state envelope of maximum and minimum angular displacement for different
initial conditions. (a) c0 = 0; (b) c0 = 0.2; (c) c0 = 1.5.

3. FORCED VIBRATIONS

Forced vibration analysis is now in focus. First, one considers a square wave excitation
with amplitude δ. Actually, the considered square wave uses 1% of the period to load or unload.
One starts the analysis by considering bifurcation diagrams (Fig.4). The dissipation parameter is

510 .c =  and different frequency parameters are considered. The first 30 cycles are neglected.

In order to analyze the jump phenomenon for Ω = 1, one considers two values of forcing
amplitude near amplitude δ = 0.22, say δ = 0.22 and δ = 0.23. Figure 5a shows the steady state
response for these two situations. For Ω = 2, high values of forcing amplitudes presents different
behavior on bifurcation diagram. After jump, which occurs near δ = 0.37, one value of the
forcing amplitude is related with many points. This behavior is associated with transient response
since the steady state is periodic. Figure 5b shows the steady state response for two forcing
amplitudes very close: δ = 0.37 and δ = 0.38. There is a global change on dynamical response.
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Figure 4 - Bifurcation Diagrams. (a) Ω = 1; (b) Ω = 2.
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Figure 5 - Steady state response. (a) Ω = 1; (b) Ω = 2.

In spite of the beam does not exhibit chaotic motion with the considered physical
parameters, jump phenomenon and sensitivity on initial conditions introduces difficulties to
predict the beam behavior. Poddar et al. (1988) show that chaotic motion occurs in Symonds’
beam when it is subjected to periodic impulses. Hence, it is interesting to consider different
parameters to evaluate the possibility of chaotic motion. With this aim, one considers a
dissipation parameter c0 = 0.2. Figure 6 shows the bifurcation diagram with frequency parameter
Ω = 1. Now, it is possible to identify regions with cloud of points associated with chaos.

The strange attractor of the motion for δ = 0.08 is depicted in Fig.7a, while Fig.7b presents
the periodic phase plane for δ = 0.04. The Fast Fourier Transform (FFT) analysis permits to
clearly identify the difference between the two responses (Fig.8). As it is well known, the FFT of
a chaotic signal presents continuous spectra over a limited range. The energy is spread over a
wider bandwidth. On the other hand, the FFT of a periodic signal presents discrete spectra, where
a finite number of frequencies contribute for the response (Moon, 1992; Mullin, 1993).
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Figure 6 - Bifurcation Diagram for c0 = 0.2 and Ω = 1.
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Figure 7 - Beam response for Ω = 1 and c0 = 0.2.

(a) Strange attractor for δ = 0.08; (b) Phase plane for δ = 0.04.
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Figure 8 - FFT analysis Ω = 1 and c0 = 0.2. (a) Chaotic, δ = 0.08; (b) Periodic, δ = 0.04.

Chaotic motion may also occur when the beam is subjected to a harmonic excitation. In
order to analyze this situation, one considers a harmonic sinusoidal excitation, )sin()( τΩδτ =f
with a dissipation parameter c0 = 0.2. Figure 9 shows the bifurcation diagram with frequency
parameter Ω = 1. As in the previous case, it is possible to identify regions with cloud of points
associated with chaos. Figure 10 shows the strange attractor of the motion for δ = 0.13, while
Fig.10b presents the periodic phase plane for δ = 0.15. The Fast Fourier Transform (FFT)
analysis permits to identify a clearly difference between the two responses (Fig.11).
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Figure 9 - Bifurcation Diagram for c0 = 0.2 and Ω = 1.
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Figure 10 - Beam response for Ω = 1 and c0 = 0.2.

Strange attractor for δ = 0.13; (b) Phase plane for δ = 0.15.
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Figure 11 - FFT analysis Ω = 1 and c0 = 0.2. (a) Chaotic, δ = 0.13; (b) Periodic, δ = 0.15.

4. CONCLUSIONS

A dynamic analysis of a pin-ended elasto-plastic beam, described by the Symonds’ model,
is considered. Ideal plasticity is focused. The numerical method proposed in this work permits the
use of a combination of classical algorithms to evaluate the response of elasto-plastic dynamical
systems. Numerical simulations of free and forced vibrations are evaluated. Forced vibrations
analysis shows that jump phenomenon occurs for some parameters. In this situation, a very close



change in forcing parameter causes a qualitative change in the beam response. Chaotic motion is
also possible in the beam response. These behaviors may cause practical problems to predict the
response of the beam, even when periodic response is expected.
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