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Abstract. High dimensional dynamical systems have intricate behavior either on temporal or on
spatial evolution properties. Nevertheless, most of the work on chaotic dynamics has been
concentrated on temporal behavior of low-dimensional systems. This contribution reports on the
chaotic response of a two-degree of freedom Duffing oscillator. Since the equations of motion are
associated with a four-dimensional system, the analysis is performed by considering two Duffing
oscillators, both with single-degree of freedom, connected by a spring-dashpot system. With this
configuration, it is possible to analyze the transmissibility of motion between the two oscillators.
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1. INTRODUCTION

Non-linear dynamics of mechanical systems presents some characteristics not observed in
linear systems. As an example, one could mention chaotic motion where unpredictability and
sensitivity on initial conditions are some important characteristics. The study of chaos considers
proper mathematical and geometrical aspects. Therefore, new analytical, computational and
experimental methods are developed to analyze the non-linear response of dynamical systems.
Since these aspects usually consider geometrical approach, they introduce difficulties to describe
systems with many degrees of freedom (Alligood et al., 1997; Savi, 1997; Moon, 1992; Hilborn,
1994; Mullin, 1993; Ott, 1993; Kapitaniak, 1991; Wiggins, 1990; Schuster, 1989; Thompson &
Stewart, 1986; Guckenheimer & Holmes, 1983). High dimensional dynamical systems have
intricate behavior either on temporal or on spatial evolution properties. Nevertheless, most of the



work on chaotic dynamics has been concentrated on temporal behavior of low-dimensional
systems (Umberger et al., 1989).

Many researches have been developed to study dynamical systems described by simple
mathematical models. Despite the deceiving simplicity of these models, their nonlinear dynamic
response may exhibit a number of interesting, complex behaviors. Mathematically, there are two
kinds of dynamical models: differential equations model, which is continuous in time, and map,
which describes the time evolution of a system by expressing its state as a function of its previous
time. Hence, map is a dynamical system moving through time in discrete updates. One of the
most important uses of maps is to assist in the study of a differential equation model (Alligood et
al., 1997). Duffing and van der Pol oscillators, non-linear pendulum and Lorenz system are some
examples of classical dynamical systems described by differential equations model
(Guckenheimer & Holmes, 1983). On the other hand, logistic and tent map are some of the one-
dimensional maps while Henon and Ikeda map are some of the classical two-dimensional maps
(Alligood et al., 1997; Ott, 1993).

The Duffing oscillator has been used to model the non-linear dynamics of special types of
mechanical and electrical systems. The differential equation that describes this oscillator has a
cubic non-linearity, and it has been named after the studies of G. Duffing in the 1930s. A number
of physical systems can be described using Duffing equation. As some examples, one could
mention an electrical circuit with a non-linear inductor and the postbuckling vibrations of an
elastic beam column under compressive loads.

The present contribution discusses the non-linear dynamics of a Duffing oscillator with
two-degree of freedom. Special attention is given to chaotic motion and since the equations of
motion are associated with a four-dimensional system, the analysis is performed by considering
two Duffing oscillators, both with single-degree of freedom, connected by a spring-dashpot
system. With this assumption, it is possible to analyze the transmissibility of motion between the
two oscillators. Some conclusions are made and may be used to understand the behavior of other
dynamical system either with multiple degrees of freedom or continuous.

2. EQUATIONS OF MOTION

Consider a two-degree of freedom oscillator depicted in Fig.1. It consists of two masses, mi

(i = 1,2), supported by non-linear springs with stiffness Ki (i = 1,2,3) and linear dampers with
coefficient ci (i = 1,2,3). The system is harmonically excited by two forces Fi = δi sin(Ωit) (i =
1,2).
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Figure 1 - Two-degree of freedom Duffing oscillator.

The non-linear spring behavior is described by considering that the restoring force is not
linearly proportional to the displacement. The behavior of each spring is defined by the following
function, where a cubic non-linearity is conceived,
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The variable u represents the displacement associated with the spring; ki and ai are constants. By
establishing the equilibrium of the system and assuming 10 uy = , 11 uy �= , 22 uy =  and 23 uy �= ,

the following dynamical system is written

])()()()()[/1(

])()()()()[/1(

3
23

3
0222320233212223

32

3
022

3
012202132121111

10

yayyaykkykyccyctFmy

yy

yyayaykykkycycctFmy

yy

−−−+−++−+=

=
−+−++−++−=

=

�

�

�

�

(2)

The characterization of chaotic motion must be considered by some criterion, which
establishes a quantitative definition of chaos. Lyapunov exponents are an acceptable criterion,
which is used in this article by considering the algorithm proposed by Wolf et al. (1985).

In the following sections, numerical simulations of the forced response of the Duffing
oscillator are discussed. In all simulations, one has taken m1 = m2 = 1, k1 = k3 = -0.02, a1 = a3 = 1,
c1 = c3 = 0.05. It is also considered a harmonic excitation )sin()( ttF iii Ω=δ (i = 1,2). Fourth order

Runge-Kutta method is used to numerical integration and time steps less than ∆t = 2π / 600Ω
present good results.

3. LINEAR CONNECTION

In this Section, two Duffing oscillators, both with one-degree of freedom, connected with a
linear spring-viscous damper system are discussed. Therefore, one considers a2 = 0, and the
parameters c2 and k2 are used to analyze the transmissibility of motion between the two
oscillators. By considering c2 = k2 = 0, it is clear that there are two independent oscillators. The
same frequency parameter is taken for both oscillators, Ω1 = Ω2 = 1, while two different forcing
amplitudes are assumed: δ1 = 7.5 and δ2 = 4. The parameter δ1 = 7.5 causes chaotic motion on the
first oscillator while δ2 = 4 results in a periodic motion (Fig.2).
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Figure 2 - Poincaré section for two oscillators (k2 = c2 = 0).



In order to start the analysis of transmissibility of motion, a linear spring connection is
considered. Therefore, c2 = 0, and the parameter k2 may vary. First, one considers bifurcation
diagrams which represent the stroboscopically sampled displacement values, y0 and y2, under the
slow quasi-static increase of parameter k2 (Fig.3). The chaotic motion of mass m1 is completely
transmitted to mass m2 when k2 decreases, however, the Poincaré section associated with mass
m2 has a different pattern from the usual form of the strange attractor presented by the mass m1

(Fig.4).
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Figure 3 - Bifurcation diagrams for y0 vs k2 and y2 vs k2 with c2 = 0.
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Figure 4 - Poincaré section with c2 = 0 and k2 = -0.02.

Now, a linear viscous damper connection is focused. Hence, k2 = 0, and the parameter c2 is
used to analyze the transmissibility of motion between the two oscillators. One considers
bifurcation diagrams relating the sampled displacement values, y0 and y2, under the slow quasi-
static increase of parameter c2 (Fig.5). The energy dissipation on the connection establishes a
different kind of transmissibility. For high values of the parameter c2, the motion of the two
masses tends to be similar.
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Figure 5 - Bifurcation diagrams with k2 = 0. (a) y0 vs c2 ; (b) y2 vs c2;
(c) Zoom for y0 vs c2; (d) Zoom for y2 vs c2.

Figures 6-7 show the Poincaré sections for k2 = 0 and some different values of the
dissipation parameter. Figure 6 considers c2 = 0.05, and chaotic motion is observed for both
masses. Again, the strange attractor of mass m1 has a usual form, while mass m2 presents a
different pattern. On the other hand, Fig.7 considers c2 = 0.1, and there is a periodic motion.
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Figure 6 - Poincaré section with k2 = 0 and c2 = 0.05.
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Figure 7 - Poincaré section with k2 = 0 and c2 = 0.1.

A linear spring-viscous damper connection is now conceived. The spring constant is
k2 = -0.02, and the parameter c2 is used to analyze the transmissibility of motion between the two
oscillators. Figure 8 shows the bifurcation diagrams for this situation.
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Figure 8 - Bifurcation diagrams for y0 vs c2 and y2 vs c2 with k2 = -0.02.

Figures 9-10 show the Poincaré sections for k2 = -0.02 and some different values of the
dissipation parameter. Figure 9 considers c2 = 0.05, while Figure 10 considers c2 = 0.1. In these
examples, chaotic motion is observed for both masses, and again, the Poincaré section associated
with mass m2 present a different pattern of the strange attractor.
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Figure 9 - Poincaré section with k2 = -0.02 and c2 = 0.05.
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Figure 10 - Poincaré section with k2 = -0.02 and c2 = 0.1.

4. NON-LINEAR CONNECTION

In this section, a non-linear connection between the two Duffing oscillators, both with one-
degree of freedom, is investigated. Therefore, one considers a2 = 1, and the parameters c2 e k2 are
used to analyze the transmissibility of motion between the two oscillators. The same conditions
presented on the preceding section are taken. In order to start the analysis, one considers
bifurcation diagrams relating the sampled displacement values, y0 and y2, under the slow quasi-
static increase of parameter k2. It is also assumed that there is no dissipation on the connection, c2

= 0 (Fig.11).
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Figure 11 - Bifurcation diagrams for y0 vs k2 and y2 vs k2 with a2 = 1 and c2 = 0.

Figures 12-13 show the Poincaré sections for two different sets of parameters. For these
examples, a different pattern of chaotic motion occurs for the two masses.
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Figure 12 - Poincaré sections with a2 = 1,  c2 = 0 and k2 = -0.0375.
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Figure 13 - Poincaré sections with a2 = 1, c2 = 0 and k2 = -0.0625.



A non-linear spring-viscous damper connection is in order. The spring constant is
k2 = -0.02, and the parameter c2 is used to analyze the transmissibility of motion between the two
oscillators. Figure 14 shows the bifurcation diagrams for this situation.
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Figure 14 - Bifurcation diagrams for y0 vs c2 and y2 vs c2 with a2 = 1 and k2 = -0.02.

By considering a2 = 1, k2 = -0.02 and c2 = 0.05, a period-2 response occurs. Figure 15
shows a typical Poincaré section for this situation.
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Figure 15 - Poincaré section with a2 = 1, k2 = -0.02 and c2 = 0.05.

5. CONCLUSIONS

This contribution discusses the chaotic response of a two-degree of freedom Duffing
oscillator. Numerical simulations are obtained using the fourth order Runge-Kutta method for
numerical integration. Since the equations of motion are associated with a four-dimensional
system, the analysis is performed by considering two Duffing oscillators, both with single-degree
of freedom, connected by a spring-dashpot system. With this assumption, it is possible to analyze
the transmissibility of motion between the two oscillators. The results show that chaotic motion



of one mass is transmitted with a different pattern to the other mass and reveals that very complex
behavior can be expected for other dynamical system either with multiple degrees of freedom or
continuous.
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