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Summary. In this work, the effects of a two-dimensional convection and conduction conjugate
heat transfer on a cross section of a flat plate solar collector are investigated. Through the
finite element method, a simultaneous solution of momentum and energy equations for
analysis of the heat exchange in the fluid (water) and in the solid (absorber plate, back
insulation and ducts) is obtained. The results are compared to the one-dimensional uncoupled
formulation used in the design of solar collectors, for different values of the tube thermal
conductivity and the distance between the tubes. This analysis allows the evaluation of the
error due to the assumption made in the one-dimensional uncoupled formulation for the
determination of useful energy gain per unit of collector length and for the collector
efficiency.
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1. INTRODUCTION

In general, a solar collector is a heat exchanger that transforms solar radiant energy into
useful heat. The incident solar heat absorbed above the absorber plate is transferred by
conduction to the tube and by convection to the fluid. As pointed out by Duffie and Beckman
(1980), flat plate collectors can be designed for applications requiring energy delivery at
moderate temperatures, up to about 100oC above ambient temperature, and they are used
efficiently in the solar water heating, whereas potential uses include building air conditioning
and industrial process heating.

In many practical design situations, the formulations of collector performance are
reduced to relatively simple forms. In this case, a one-dimensional analytical model is used to
deal with the problem of heat conduction in the absorber plate, insulation and ducts. The tube
wall resistance may be neglected, and the interactions of the convection heat transfer between
the tube and the fluid are represented taking into account a uniform convection coefficient for
the entire interface solid-fluid. This one-dimensional uncoupled model still considers constant
temperature in the tube internal surface.

Concerning this aspect, the two-dimensional heat transfer analysis with a conjugate
approach, Patankar (1980), in which the conduction in the solid and the convection in the



fluid are considered in a single calculation domain, becomes necessary to evaluate when the
assumption made in the one-dimensional analysis is valid and then predict the performance of
the collector more accurately.

In recent years, with the availability of high-speed and large-capacity digital computers,
numerical methods and the Computational Fluid Dynamics (CFD) codes have been brought
out to solve heat transfer and fluid mechanic problems in engineering application, Freitas
(1995).

In this context, this work uses a computational program based on the finite element
method for the study of conduction and convection effects in the two-dimensional conjugate
heat transfer in a cross-section of a flat plate solar collector. This solar collector is composed
by an absorber plate, back insulation and tubes. The results are compared to the one-
dimensional uncoupled model found in literature.

2. TWO-DIMENSIONAL CONJUGATE HEAT TRANSFER FORMULATION

In the two-dimensional conjugate heat transfer approach, the conduction in the solid and
the convection in the fluid must both be considered, with a proper matching at the fluid-solid
interface, and achieving a simultaneous solution of the momentum and energy equations. The
adherence conditions of the fluid lying in the solid region and the equality of temperature and
heat flux in the interface are intrinsic to the model. A scheme of the collector is shown in Fig.
1, where W is the distance between the tubes; ep is the plate thickness, ei is the insulation
thickness; D and d are the external and internal diameters of the tube, respectively.

ep y
x

z

d
ei

W

W-D

Figure 1: Cross-section of a basic flat plate solar collector.

The momentum and energy equations are presented in the following section in the
Cartesian coordinate system, for steady state and constant properties, as well as the boundary
conditions associated with the problem.

2.1 Velocity Field

The momentum equation in the flow direction for laminar forced convection inside a
circular tube, in which it is considered that the flow is hydrodynamically developed, can be
written in the form:
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where µ is the dynamic viscosity of the fluid, u is the velocity and dP/dz is the constant axial
pressure gradient.



Equation (1) will be solved in a domain shown in Fig. 2. In the solid region, dP/dz=0 and
a very high value of viscosity with respect to the fluid viscosity are adopted, Patankar (1980).

After the solution of Eq. (1), the following flow parameters can be obtained:
- Mean velocity:
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where A is the tube cross-section area.
- Reynolds number:

µ
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where ρ is the density of the fluid.
- Friction factor:
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2.2 Temperature Field

The energy equation in the thermally fully developed region, assuming a very small axial
diffusive transport compared to the radial diffusive transport, and considering that the tube
wall mean temperature is uniform in the axial direction, Kays and Crawford (1993), is given
by:
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where k is the thermal conductivity and cp is the specific heat.
Equation (5) also will be solved in the domain shown in Fig. 2. In the solid region (u=0),

the right side of Eq. (5) becomes equal to zero and the energy equation is simplified to the
two-dimensional, steady state heat conduction equation with no heat generation.

With the results of Eqs. (1) and (5), the following parameters concerning to the heat
transfer in the fluid can be calculated:

- Bulk temperature:
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- Tube wall mean temperature:
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where Per is the perimeter, Tw is the wall temperature and s is the arc length on the tube
internal surface.



- Heat flux from the tube to the fluid:

wall
t nTkuq 1.∇−=′′ ( 8 )

where kt is the thermal conductivity of the tube and 1n
&

 represents the normal unit vector at the
internal surface and outward to the fluid region.

- Useful energy gain per unit of collector length:
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- Axial mean temperature gradient:
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- Local convection coefficient:
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- Mean convection coefficient:
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- Mean Nusselt number:
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where kf is the thermal conductivity of the fluid.

2.3 Boundary Conditions

The boundary conditions associated to the momentum and the energy equations are
applied on the domain represented in Fig. 2 and given by:
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Figure 2: Symmetrical cross-section of the studied collector.
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Surface 2: Symmetry.
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Surface 3: Bottom of the collector.
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Surface 4: Top of the collector.
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where n2 represents the normal unit vector outward to the domain surface, ki is the thermal
conductivity of the insulator, kp is the thermal conductivity of the flat plate, Ta is the ambient
temperature, ha is the free convection coefficient to the atmosphere, S is the absorbed solar
energy incident on the flat plate and Uc is the overall thermal loss coefficient of the collector.

3. NUMERICAL SOLUTION

The numerical solution of the momentum and the energy equations was obtained by using
a program based upon the Galerkin finite element method. This program uses a quadratic



interpolation polynomial to convert continuous partial differential equations into discrete
nodal equations. The program also uses an unstructured automated adaptive grid refinement,
fine gridding only in areas involving sharp curvatures, tight geometries and large gradient of
dependent temperature as needed until error criteria are met, providing near optimum speed
and memory utilization. The algebraic equations system has been solved through the iterative
conjugate-gradient method, using the incomplete Cholesky decomposition as a
preconditioner, Macsyma Inc. (1996).

4. ONE-DIMENSIONAL UNCOUPLED FORMULATION

In accordance with Bliss (1959), the efficiency of a collector is directly proportional to a
"collector efficiency factor" F'. For the collector shown in Fig. 1, this collector efficiency
factor is given by:
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The two terms in the denominator of Eq. (18) relate to the heat conduction from the
absorber plate to the tubes and the heat transfer from the internal tube surface to the fluid,
respectively.

The fin (flat plate) efficiency F is:
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The useful energy gain per unit of collector length is given by:
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The collector efficiency is given by:
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In this one-dimensional approach, the tube wall resistance is neglected and the analysis of
convection inside the tube is depicted by a uniform coefficient at the tube internal surface.

5. RESULTS AND DISCUSSION

In this work, the following numerical values for the water physical properties are used:
ρ = 985 kg/m3,  kf = 0,651 W/(m⋅K),  cp = 4184 kJ/(kg⋅K),  µ = 7,71 ×10-4 kg/(m⋅s). The
values for the other parameters are: Uc = 7 W/(m2⋅K), S = 1100 W/m2, ha = 10 W/(m2⋅K),
Tb = 333 K, Ta = 293 K, dp/dz = 10 kg/(m2⋅s2), kp = 211 W/(m⋅K), kt = 211 W/(m⋅K),
ki = 0,024 W/(m⋅K),  ep = 0,001 m,  ei = 0,050 m,  d = 0,010 m,  D = 0,013 m,  W = 0,120 m.



The value of the axial mean temperature gradient was estimated initially and improved
after each iteration until the convergence criteria is obtained.

The numerical results obtained for the product of the friction factor and the Reynolds

number (f⋅Re) and for the mean Nusselt number ( Nu ) are in very good agreement with the
ones presented by Kays and Crawford (1993) for constant wall temperature boundary
condition, despite the fact of variable temperature in the tube internal wall surface, as shown
in Fig. 3.

We can observe in Fig. 3 higher values of temperature in the region in contact with the
flat plate, due to solar energy absorption, and lower values of temperature in the region in
contact with the back insulator, due to losses by conduction.
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Figure 3: Temperature distribution in the tube internal wall surface.

Figure 4 shows that the temperature in the collector cross-section (along the x axis in Fig.
2) decreases from the flat plate symmetry line to the region near the tube, remaining
practicality constant in the tube wall and decaying in the fluid region.
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Figure 4: Temperature distribution in the cross-section of the collector.



The isothermal lines and the temperature gradient vectors in Fig. 5 show that the heat
conduction has more intense two-dimensional features in the region next to the tube (Fig. 5b)
and in the region near the flat plate symmetry line (Fig. 5c). These evidences of two-
dimensional conduction are fundamental for the more realistic analysis of the thermal
behavior of the collector.
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Figure 5: (a) Isothermal lines in the cross-section of the collector, (b) Two-dimensional heat
flux in the tube, (c) Two-dimensional heat flux in the flat plate.

Results for the useful energy gain and for the collector efficiency. The results
obtained from Eq. (9) have been compared to the results of Eq. (20) for different values of
tube thermal conductivity and tube spacing. Through the data obtained for the useful energy
gain, we can also compare the results for the collector efficiency defined in Eq. (27).

Figure 6 shows that the error between one-dimensional and two-dimensional
formulations decreases with the increase of the tube thermal conductivity, being around 6%
for values above the 150 W/(m⋅K). For values of thermal conductivity below that, the tube
wall resistance starts to be an important factor in the formulation. Thus, the two-dimensional
approach becomes essential for a more accurate analysis of the collector performance.

Figure 7 shows that the error between the one-dimensional and two-dimensional
formulations also diminishes with the increase of tube spacing, practically being constant for
values above W=0,120 m, due to the predominance of the one-dimensional conduction in the
flat plate.
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Figure 6: Useful energy gain and collector efficiency error variation with tube wall thermal
conductivity.
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Figure 7: Useful energy gain and collector efficiency error variation with tube spacing.

6. CONCLUDING REMARKS

The thermal and hydrodynamic behavior of a flat plate solar collector was studied using a
finite element method with a conjugate heat transfer approach, where the conduction in the
solid and the convection in the fluid were analyzed in a coupled form. The numerical solution
has presented no convergence or stability problems, and the mesh used was refined in the
regions where the variable presented greater gradients, i.e., near the absorber flat plate region
and near the tube-water interface. The numerical results obtained were compared with the
results of the classic formulation, which assumes one-dimensional heat conduction and tube
wall resistance negligible. With the two-dimensional conjugate heat transfer, it was verified
that the heat conduction presents more intense two-dimensional features near the tube region



and near the symmetry line of the absorber plate. Thus, the main sources of error were found
for short flat plate and for lower values of tube thermal conductivity.

7. ACKNOWLEDGEMENTS

The first author is grateful for the grant and all the support provided by CAPES.

8. REFERENCES

Bliss, R. W. Jr., 1959, The Derivations of Several Plate-Efficiency Factors Useful in the
Design of Flat-Plate Solar Heat Collectors, Solar Energy, vol. 3, pp. 55-64.

Duffie, J. A. and Beckman, W. A., 1980, Solar Engineering of Thermal Processes, J. Wiley,
New York.

Freitas C. J., 1995, Perspective: Selected Benchmarks from Commercial CFD Codes, Trans.
ASME Journal of Fluids Engineering, vol. 117, pp. 206-218.

Kays, W. M. and Crawford, M. E., 1993, Convective Heat and Mass Transfer, McGraw-Hill,
3rd. ed., New York.

Macsyma Inc., 1996, PDEase2DTM 3.0 Reference Manual, 3rd. Ed.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing

Corporation, Washington.


