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Abstract. Hydrodynamically developed, thermally developing laminar flow of a Newtonian
fluid inside straight rectangular ducts with boundary uniform axial and peripheral heat flux is
analytically studied using the generalized integral transform technique. Laminar fluid flow,
constant fluid properties, high Péclet number and negligible viscous dissipation hypothesis
are employed. The energy equation for the unknown temperature distribution is transformed
by the use of the integral transform technique resulting in a coupled system of first order
ordinary differential equations for the unknown transformed temperature profile. Such system
is solved and the temperature profile can be retrieved by using the inversion formula.
Numerical results are presented for quantities of practical interest within the thermal entry
and the fully developed region, for a wide range of the axial distance and several aspect
ratios. Some of those thermal quantities are: bulk fluid temperature, average wall
temperature, average and local Nusselt numbers.

Keywords: Forced convection, Rectangular duct, Generalized integral transform technique.

1. INTRODUCTION

The increasing needs for energy savings has motivated the development of lighter, more
economic and efficient heat exchanger devices. These needs have greatly stimulated the
research in the heat transfer characteristics for tubes of various cross sections. Heat transfer
solutions for laminar forced convection through rectangular channels is of great interest, as
these are often employed in several heat-exchange devices, like compact heat exchangers,
solar collectors, nuclear reactor plate-type fuel assemblies, and several other devices.

Exact heat transfer solutions for laminar forced flow inside rectangular ducts are quite
desirable for both reference purposes and validation of numerical and approximate schemes,
especially for thermally developing flows. Except for ducts with simpler geometry, given by a
single coordinate, the available analytical works found in the literature are quite scarce. The
rectangular channel is a typical example, with the difficulties that arise from the solution of
multidimensional convection problems, demanding costly numerical solutions, and limited to
regions away from the inlet.



The extension of the generalized integral transform technique to solve three-dimensional,
non-separable, convection-diffusion problems within irregular shaped domains was done by
Aparecido & Cotta (1990a, 1992). Further, Aparecido & Cotta (1990b) applied such
technique to solve thermally developing laminar flow inside rectangular ducts for boundary
condition of the first kind.

In this paper, the hydrodynamically developed and thermally developing laminar flow of
a Newtonian fluid inside a rectangular duct with boundary uniform axial and peripheral heat
flux is analytically studied employing the generalized integral transform technique. Several
quantities of practical interest are given within the thermal entry and the fully developed
regions, for a wide range of the axial distance and several aspect ratios.

2. ANALYSIS

The present study deals with the laminar flow of a Newtonian fluid inside a rectangular
duct, having a fully developed velocity profile and subjected to uniform axial and peripheral
heat flux. The rectangular duct and its coordinate system are depicted in Figure 1.
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Figure 1. Coordinate system for the rectangular duct with axial and peripheral heat flux.

The energy equation for constant physical properties, when viscous dissipation may be
neglected, is written as
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with inlet and boundary conditions given by
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The dimensionless form of Eqs. (1) may be written as
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where the following dimensionless groups were defined:
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The dimensionless velocity profile is given by Aparecido & Cotta (1990b) as an infinite
series in the following form
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In order to set all the boundary conditions to homogeneous, we take the following
variable transformation
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Then, Eqs. (2) becomes
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with inlet and boundary conditions given by
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3. SOLUTION

Due to the non-separable nature of problem defined by Eqs. (6), it cannot be solved
through the classical Integral Transform Technique - ITT (Mikhailov & Özisik, 1984). This
analytical method, though a powerful tool for solving linear boundary value problems found
in heat transfer applications, cannot deal with problems involving non-separable eigenvalue
systems. To overcome that and other limitations, several ideas have been presented in order to
extend the classical ITT after the pioneering work of Özisik & Murray (1974). The so-called
Generalized Integral Transform Technique (GITT) that is an extension of the Integral
Transform Technique (ITT) can handle more general problems. For further information on the
GITT, the reader may refer to the work of Cotta (1993). The use of the GITT can be
summarized by the following basic steps.

Choosing and Solving the Eigenvalue Problems
The eigenvalue problems in both coordinate variables X and Y are chosen (Aparecido,

1997) as
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which may be readily solved to yield the eigenfunctions and eigenvalues as

)cos()( ),cos()( YCYXBX mmmiii λφµψ == ;   (9a,b)



β
πλ

α
πµ )1(

,
)1( −=−= mi

mi .   (9c,d)

The parameters Bi and Cm are nonzero arbitrary constants, and they are chosen so that
the orthogonal functions )( Xiψ  and )( Ymφ  be also orthonormal. Then
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where δij or δmn is the Kronecker delta.

Defining the Integral Transform Pair
The integral transform pair with respect to the ψ and φ variables is stated as
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Transforming the Problem Formulation
Operating the integral transform on the energy equation with the transforms defined

above, one can obtain the following infinite system of coupled ordinary differential equations
for the transformed dimensionless temperature (Aparecido & Cotta, 1990b)
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The transform of the inlet condition becomes
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The double integral in Eq. (11b) is evaluated to provide
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Truncating the Infinite System
The system given by Eqs. (11) provides an infinite number of coupled first order ordinary

differential equations for the transformed dimensionless temperature subjected to the
transformed initial condition given by Eqs. (12). The analysis hitherto presented is evidently
formal and exact, but in order to yield numerical results the infinite system (11) has to be
truncated to a sufficiently large finite dimension as shown bellow
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subjected to the initial condition
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where N is the number of terms in the truncated series, chosen sufficiently large to provide the
desired accuracy. The finite system (14) of N2 coupled equations may be written in a matrix
form as
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where the matrices A and B, and the vectors c and g are a proper representation of the scalar

coefficients Aijmn, )( 22
mi λµ + , imS

~
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~
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vector y(Z) is a representation of the dimensionless temperature transform and is defined as
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Multiplying Eq. (15a) by the inverse of matrix A, it becomes

ey Dy' += )( )( ZZ (17a)



where BAD -1 −=   and  cAe -1 = . (17b)

Solving the Finite System
The finite system (17) can be solved using packed subroutines for solving initial value

problems, such as DIVPAG from the IMSL package (Visual Numerics, 1994), providing the
system solution with high accuracy.

Once the system solution has been found, the inversion formula Eq. (10b) combined with
Eqs. (5) and (16) is recalled to compute the dimensionless temperature profile
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Computing the Quantities of Practical Interest
The dimensionless bulk fluid temperature and the peripherally averaged wall temperature,

the local and average Nusselt number at any tube cross section are computed as follow.
The dimensionless bulk fluid temperature is determined as
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from which, evaluating the double integral, one can find that
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It can be readily shown by using the First Law of Thermodynamics that the
dimensionless bulk fluid temperature, for problems in which all boundary conditions are of
the second kind, is given in the following form, remarkably less involving than Eq. (19b).
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The dimensionless average wall temperature is given by
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which, after evaluating the integrals, yields
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The Nusselt number can be evaluated from the balance between the heat flux input and
the heat convection output at the wall, and can be written as
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An alternative way to compute the Nusselt number arises from the use of Eq. (19c),
yielding
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so that for the fully converged solution, Eqs. (21a) and (21b) should yield the same numerical
result, providing an interesting check of the convergence behavior.

The average Nusselt numbers are then computed from
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Unless explicitly stated, the local and average Nusselt number that appear bellow refers
to Nu1 and Nu1,av, computed using Eq. (21a) and (22a), respectively.

4. RESULTS AND DISCUSSION

System (17), truncated with N ≤ 20 terms, has been solved using the DIVPAG subroutine
from the IMSL package to illustrate the convergence behavior of the present approach, with Z
ranging from 10-4 to 102. Figure 2 shows a convergence comparison of Nu1(Z) and Nu2(Z), as
obtained from Eqs. (21a) and (21b), for a square duct (α* = b/a = 1). For all the tested values
of N, the results from these two expressions are practically coincident throughout the
considered Z domain. As one can see, for values of Z greater then 3×10-3, the calculated
Nusselt numbers lie over a single curve, reaching a fully developed value of 3.087 when Z is
bigger than unity. Besides, increasing the value of N towards infinity, the solution of the
truncated system (17) approaches the exact one, given by Eqs. (11). For practical purposes, as
shown in Fig. 2, a good approximation is obtained for N = 15.

Figure 3 correspond to the dimensionless bulk and average wall temperature along the
thermal entry region of rectangular ducts for different aspect ratios. It can be noted that the
bulk fluid temperature curves lie all together for every aspect ratio, and agree completely with
Eq. (19c). It is noticeable that the average wall temperature increases non-linearly from the
inlet until about Z = 0.1. Afterwards, it begins to behave linearly-like, tending to become
parallel to the bulk fluid temperature curve, as the axial coordinate further increases.
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Figure 4 – Local (a) and average (b) Nusselt number in the thermal entry
   region of rectangular ducts for different aspect ratios.



Figure (4a) and (4b) presents, respectively, the local and average Nusselt number in the
thermal entry region of  rectangular ducts for several aspect ratios. As one can see, the curves
are relatively separated near the inlet region, becoming closer as the axial coordinate
approaches unity, from where they assume their fully developed value.

Table 1 presents a comparison between the present results and the available in the open
literature, employing a discrete least squares method, showing good agreement.

Table 1 – Comparison of results for fully developed Nusselt number.

Aspect Ratio Fully Developed Nusselt Number
(α* = b/a) Present work Shah & London (1978)

1 3.09 3.09
2 3.02 3.02
5 2.92 2.93
10 2.91 2.95
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