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Abstract. Heat transfer in the entrance-region laminar flow of viscoplastic materials inside annu-

lar spaces is analyzed, aiming at applications related to the drilling process of petroleum wells. The

material is assumed to behave as a Generalized Newtonian Liquid, with a Herschel-Bulkley vis-

cosity function. The governing equations are solved numerically via a finite volume method. Two

boundary conditions were analyzed: constant wall heat fluxes and constant wall temperatures. The

effect of yield stress and power-law exponent on the Nusselt number is investigated. It is shown

that the entrance length decreases as the material behavior departs from Newtonian.
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1. INTRODUCTION

The present work analyzes the developing flow and heat transfer of viscoplastic materials
through the annular spaces between two coaxial tubes. Two different thermal boundary
conditions at the inner wall are investigated: uniform wall heat flux and uniform temper-
ature. The outer wall was considered adiabatic. The governing conservation equations
are solved numerically via a finite volume method. The material is assumed to behave as
a Generalized Newtonian Liquid (GNL), with a Herschel-Bulkley viscosity function (Bird
et al., 1987) in order to model the viscoplastic behavior (i.e., non-zero yield stress) of the
flowing material.

Many industries deal with viscoplastic materials in their processes. An important ex-
ample is the drilling process of petroleum wells, where the drill mud is injected through
the well. These materials should have certain rheological properties to ensure the success
of a drilling operation. They should have the correct density to provide the pressure



needed for well integrity and for avoiding premature production of hydrocarbons. Also,
to drag the rock chips generated by the drill with reasonably low pumping power, a
shear-thinning rheological behavior is highly convenient. In order to evaluate the correct
rheological properties of these kind of materials, which are strong functions of tempera-
ture, the temperature field throughout the flow must be known.

Several papers discuss heat transfer of non-Newtonian fluids in axisymmetric flows.
Bird et al. (1987), Irvine and Karni (1987), Joshi and Bergles (1980a, 1980b), Scirocco et
al. (1985) and analyzed the heat transfer in flows of Power-Law fluids through tubes and
proposed correlations for the Nusselt number. Vradis et al. (1992) analyzed numerically
the heat transfer problem for developing flows of Bingham materials with constant prop-
erties through tubes. They considered the case of simultaneous velocity and temperature
development. Nouar et al. (1994) presented an experimental and theoretical heat transfer
study for Herschel-Bulkley materials inside tubes. They considered fully developed veloc-
ity profiles and investigated the entrance region. The impact of temperature-dependent
rheological properties on velocity profiles and Nusselt numbers was also discussed. In a
more recent work, Nouar et al. (1995) analyzed numerically the heat transfer to Herschel-
Bulkley materials flowing through tubes. They considered temperature-dependent consis-
tency index and simultaneous velocity and temperature development, and neglected axial
diffusion of heat. Some correlations for local Nusselt number and pressure gradient were
proposed. Soares et al. (1999) studied the developing flow of Herschel-Bulkley materials
inside tubes, for constant and temperature-dependent properties, taking axial diffusion
into account. Among other results, they observed that the temperature-dependent prop-
erties do not affect qualitatively pressure drop or the Nusselt number. Also, it was shown
that axial diffusion is important near the tube inlet.

Heat transfer to viscoplastic materials through annular flows was investigated experi-
mentally by Naimi et al. (1990). In their work, the inner cylinder was able to rotate, and
a secondary flows appears due to rotation. The heat transfer coefficient was obtained as a
function of the axial coordinate and angular velocity of the inner cylinder. More recently,
Soares et al. (1998) studied heat transfer in a fully developed flow of Herschel-Bulkley
materials through annular spaces, with insulated outer walls and with uniform heat fluxes
at the inner walls. For that case it was observed that the Nusselt number depends quite
little on the rheological properties.

2. ANALYSIS

The flow under study is steady and axisymmetric. The outer and inner radii are R0 and
Ri, respectively. The thermophysical and rheological properties of the flowing material
are considered to be independent of temperature as a first approximation. The gov-
erning conservation equations are solved numerically via a finite volume method, to be
described shortly. The constitutive equation is the Generalized Newtonian Liquid (GNL),
namely, τττττ = ηγ̇̇γ̇γ̇γ̇γ, where τττττ is the extra-stress tensor and γ̇̇γ̇γ̇γ̇γ ≡ gradv + (gradv)T the rate-
of-deformation tensor, where v is the velocity vector. The viscosity function is given by
the Herschel-Bulkley equation (Bird et al., 1987):

η =
{ τ0

γ̇
+ Kγ̇n−1. if τ > τ0;

∞, otherwise.
(1)

In eq. (1), τ0 is the yield stress, τ ≡
√

1
2
tr τττττ 2 is a measure of the magnitude of τττττ , γ̇ ≡√

1
2
tr γ̇̇γ̇γ̇γ̇γ2 is a measure of the magnitude of γ̇̇γ̇γ̇γ̇γ, K is the consistency index, and n is the

power-law exponent.



Two thermal boundary conditions are investigated for the inner wall: uniform heat flux
(qw = constant) and uniform temperature (Tw =constant). The outer wall was maintained
insulated (qw = 0).

The dimensionless mass conservation equation is given by:

1

r′
∂

∂r′
(r′v′) +

∂

∂x′ (u′) = 0 (2)

where r′ = r/δ and x′ = x/δ are the radial and axial dimensionless coordinates, u′ = u/δγ̇c

is the dimensionless axial velocity, v′ = v/δγ̇c is the dimensionless radial velocity and
δ = DH/2 = Ro − Ri is the gap of the annular space.

Momentum conservation in axial and radial directions, respectively, is assured when
the following dimensionless equations are satisfied:
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2ū′

Re

[
∂η′

∂r′
∂v′

∂r′
+

∂η′

∂x′
∂u′

∂r′
− η′ v

′

r′2

]
− ∂P ′

∂r′
(4)

In the above expressions, η′ = η/ηc is the dimensionless viscosity and the dimensionless
pressure P ′ is given by P ′ = p/τc. The quantity τc is a characteristic shear stress, defined
as τc ≡ −dp/dxRo/2. The characteristic viscosity is ηc = η(γ̇c) = τc/γ̇c, where γ̇c is the

characteristic shear rate, given by γ̇c = [(τc − τ0)/K]1/n.
The dimensionless energy equation is given by:

1
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In this equation Pe ≡ ρcpūDH/k is the Péclet number, θ is the dimensionless temperature.

For the case with uniform heat flux boundary condition, θ ≡ (Twi−T )
/qwDH/k

, where qw is the
heat flux at the inner wall and k is the heat conductivity. For this situation, the Nusselt
number, Nu = hwiDH/k at the inner wall is given by:

Nu =
1

θb

(6)

where θb is the dimensionless bulk temperature, given by:

θb =

∫
θu′dA∫
u′dA

(7)

For cases with temperature boundary condition, θ ≡ T−Twi

Tb−Twi
, where Twi is the tempera-

ture at the inner wall and Tb =
∫

TudA∫
udA

is the bulk temperature.



Modified bi-viscosity model

The viscosity function given by eq. (1) for Herschel-Bulkley materials is not easy to handle
numerically. Then, an alternative model was proposed by Beverly and Tanner, in 1992,
for Bingham materials, the so-called bi-viscosity model . This idea can be easily extended
to Herschel-Bulkley materials, yielding the following expression for the viscosity function:

η′ =

{
τ ′
0

γ̇′ + (1 − τ ′
0)γ̇

′n−1 if γ̇′ > γ̇′
small

η′
large, otherwise

(8)

In the above equations, γ̇′ ≡ γ̇/γ̇c and τ ′
0 ≡ τ0/τc are the dimensionless shear rate and

yield stress, respectively. Beverly and Tanner (1992) recommend η′
large = 1000. Therefore,

γ̇′
small = τ ′

0/[1000 − (1 − τ ′
0)γ̇

′n−1
small] � τ ′

0/1000.

3. NUMERICAL SOLUTION

The governing equations presented above were discretized by the finite volume method
described by Patankar (1980). Staggered velocity components are employed to avoid
unrealistic pressure fields. The SIMPLE algorithm (Patankar, 1980) was used, in order to
couple the pressure and velocity. The resulting algebraic system is solved by the TDMA
line-by-line algorithm (Patankar, 1980) with the block correction algorithm (Settari and
Aziz, 1973) to increase the convergence rate.

A non uniform mesh in axial direction with 102×62 points was used, concentrating more
points near the inlet. Some mesh tests were performed in order to chose an adequate mesh.
The error obtained for the developed value of the product fRe∗ = −8(dp/dx)δ2/ηcū for
a Newtonian fluid and δ/Ro = 0.5 was compared with the ones found in the literature
(fRe∗ = 95.2) (Bejan, 1984) and an error of 0.5% was obtained. For the case with adia-
batic inner wall and constant temperature outer wall, the error obtained for the Nusselt
number NuDh, relative to the value obtained in Incropera and Witt (1992) (NuDh = 4.43),
was equal to 1.6%.

The numerical solution was also compared with some limiting cases for non-Newtonian
flows. The velocity field was compared with the exact solution obtained by Fredrickson
e Bird (1958); the velocity field of a Herschel-Bulkley fluid with a ratio of radius tending
to zero was compared to the exact solution for parallel plates; and the velocity field was
compared with the experimental data obtained by Naimi et al. (1990). In all these cases,
the agreement was quite good (Soares, 1999).

4. RESULTS

Results for some representative combinations of the governing parameters are now pre-
sented and discussed. Theoretical considerations show that there is a maximum value
τ ′
0crit = 1 − Ri/Ro (Fredrickson and Bird, 1958) for the dimensionless yield stress τ ′

0 be-
yond which no continuous solution is possible for the axial velocity field. This threshold
value corresponds to the minimum pressure gradient needed to ensure that both wall
shear stresses are larger than τ0. The present paper is restricted to situations for which
τ ′
0 is lower than this limiting value. Research for situations outside this range of τ ′

0crit is
underway.

Firstly, results for constant heat flux at the inner wall are presented. Dimensionless
velocity and temperature profiles for different yield stress are shown in Figs. 1 and 2. It
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Figure 1: Velocity profile variation with τ ′
0.

can be observed that higher yield stress cause the plug flow region to increase, as expected.
However, the dimensionless temperature is almost invariant with τ ′

0 (not shown; see Soares,
1999).

Temperature variation along the annular space is shown in Fig. 2. It can be seen that
temperature increases with the axial coordinate due to wall heating, as expected. It is
worth observing in these figures that the curve slopes at both extremities of all curves are
in accordance with the thermal boundary conditions.

Figs. 3–6 show the Nusselt number variation with flow and rheological parameters. It
can be noted in Fig. 3 that the Nusselt number increases with the Péclet number, as
expected. However, Nu is practically unaffected by the Reynolds number (not shown;
see Soares, 1999). The effect of the rheological parameters (n and τ ′

0) can be analyzed
with the aid of Figs. 4 and 5. It can be noted that higher values of Nusselt number are
obtained as the fluid behavior departs from Newtonian (i.e., higher τ ′

0 and n → 0). This
is due to the velocity gradients near the wall, which increases as the mechanical behavior
becomes more viscoplastic and/or pseudoplastic. The effect of the aspect ratio is shown
in Fig. 6. In this figure, the Nusselt number is based in the outer tube diameter, which
is held fixed. Increasing the annular space decreases the plug flow region. This behavior
leads to lower velocity gradients at the walls and, consequently, lower heat transfer rates.

Only a few results for constant temperature at the inner wall are presented, due to
space limitations. More details are found in Soares (1999). It can be said, however, that
the qualitative results are quite similar to the ones obtained for the cases of constant heat
flux. Figure 7 shows the dimensionless temperature profile, while Fig. 8 illustrates the
dependence of the Nusselt number on the Péclet number. It is observed that the Nusselt
number is less sensitive to the Péclet number than for the qw = constant case.
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Figure 2: Dimensionless temperature profile for different axial positions, qw = constant.

5. CONCLUSIONS

This paper presented a study of the heat transfer problem for the flow of Herschel-
Bulkley materials through annular spaces. Two temperature boundary conditions for the
inner wall were analyzed: uniform heat flux and uniform temperature, while the outer
wall was maintained insulated.

The governing equations were solved numerically via a finite-volume technique. Re-
sults are presented in the form of velocity and temperature profiles, and Nusselt number
variation with some governing rheological and geometric parameters.

It was noted that Nusselt numbers are a little more sensitive to the parameters analyzed
for the case of uniform heat flux.

It was also observed that the cases for which the velocity gradient at the wall is high
yield higher Nusselt numbers. However, the Nusselt number variations are rather small
for the range of rheological parameters analyzed. This result is quite important, because
it indicates that the Newtonian values of Nusselt numbers can be used to estimate heat
transfer for Herschel-Bulkley materials for the situation studied.
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Figure 3: Nusselt number variation with Pe, qw = constant.

Figure 4: Nusselt number variation with τ ′
0, qw = constant.
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Figure 5: Nusselt number variation with n, qw = constant.

Figure 6: Nusselt number variation with δ/R0, qw = constant.
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Figure 8: Nusselt number variation with Pe, Tw = constant.


