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Abstract. This paper reports the development of a module for force and surface roughness 
estimation as a part of educational software which is able to simulate the most common machining 
process, based on CNC technology. It targets becoming an auxiliary tool on professional labor 
training (engineers or technicians) in optimized machining process planning. Besides the 
conventional theoretical models, the software will implement an artificial neural network, an AI 
technique which is largely used in empiric problems to make prediction. The first results shows that 
the ANN model is very accurate and can approximate with reasonable confidence the experimental 
and theoretical results. 
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1. INTRODUCTION 
 

The machining processes in general are responsible for a significant share of the total 
component cost as well as they affect its functionality. Especially in good making companies, the 
machining processes are extensively time consuming and use a lot of tools/machine resources, and 
thus requires attention in planning. 

The process planner which normally formats the operation sheets, prior to CNC programming, 
do not have reliable tools which can simulate the machining processes and help them to select those 
adequate parameters to some task .Even the existing CAD/CAM software focus usually on the 
geometrical definition of tool paths, and don’t take into consideration fundamental machining 
physical boundaries such as machine power, acting forces, surface roughness and tool life. 

This work attempts to generate a reliable tool which can help the students to better understand 
those conditions, by using a modern computational method relying on neural networks.  



2. BACKGROUND RESEARCH 
 

2.1. Machining Processes 

2.1.1. Turning 
The turning can be considered a type of machining process which produces cylindrical parts, 

generating revolved surfaces, both internally and externally. This can be done by rotating the work 
piece and displacing the unique cutting edge tool in a plane that contains the rotation axis of the 
part. 

 
 
 
 
 
 
 
 

Figure 1 – Examples of external and internal turning operations 
 
The cutting force in turning (Fc)  can be expressed in several ways, however the most simple 
establishes: 
 

AKF sc .=    (N)  (1) 
 
Where: Ks is the specific cutting pressure in MPa e A is the chip area in mm2, which can be 
obtained by the product of feed and depth of cut. 
 
Or a estimation of Ks, Kienzle had present a simple and precise experimental equation, relating the 
chip width h 
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Where: Ks1 e z are material and tool constants 
The chip width can be related to the feed through the main cutting edge positiong angle  (χ) by: 
 

χsenfh .= (mm)  (3) 
 

 
Figure 2 – Relation between chip width and feed 
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2.1.1. Milling 
The milling process is a machining process that produces pieces of several features. The tool is 

normally provided of more than one cutting edge, and moves and rotates simultaneously. The 
process is able to generate plan, angular and circular surfaces [11]. 

 
The milling operation can be classified, following the position of the tool teeth regarding the 

machined surface, in:Peripheral Milling: where the tool’s acting teeth are placed in the cylindrical 
portion of the body and produce a machined surface which is parallel to its rotation axis.; Face 
Milling: where the tool’s acting teeth are placed in the top portion of the body and produce a 
machined surface which is perpendicular to its rotation axis and End Milling: where the tool’s 
acting teeth are placed in the cylindrical and top portion of the body and produce a machined 
surfaces which are both parallel and perpendicular to the its  rotation axis. 

 
 

 
Figure 3 – Examples of typical milling operations 

 
Additionally, it can be mentioned two different methods of milling: up and down milling. In the 

first, the feed movement takes place on the opposite direction of the cutting movement; on the other 
hand, in the second, these movements occur in the same direction. Other milling operations can be 
performed depending upon the kind of the cutter in question, such as gear teeth, slopes, angular 
profiles etc. 

 
Both in face and peripheral milling, the mean cutting power can be calculated using the mean 

pressure coefficient Ksm, following the equation: 
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Where Ksm can be estimated by the well know Kienzle relation for h = hm ; ae is the work depth 

and ap is the cutting depth. 
The bibliography presents some formulation to determine the average roughness in milling. One 

of them which is often used can be found in tooling manufactures catalogs, such as in [7]. The 
equation is: 
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Where: Rmáx is the theoretical roughness, fz is the cutting feed per tooth in mm and rε is the tool 
nose radius. 

Peripheral milling: )(1000.
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Where: D is the cutter diameter in mm. 



 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 - Theoretical roughness in peripheral milling 
 

2.2. Neural networks 
An artificial neural network (ANN) can be classified as a mathematical model, which tries to 

imitate the biological nervous systems, consisted of processing units, called neurons that are 
logically interconnected in layers. There are several references to ANN applications in machining 
area as per [7], [8] and [9], mainly regarding function approximation of some critical phenomena as 
tool wear, force or roughness. The general purpose is to obtain a model that relates certain inputs 
(supposed to be relevant) to desired outputs in order to take some decision. 

 
The figure below shows a typical topology of neural network. There is an input layer where no 

calculation occur and a output layer, where the results are shown. Usually one or more hidden 
layers exist to continue with the calculation, though weight lines and improve the network 
performance. 

 
Figure 5 – Schematic Structure o an ANN   

 
There are different types of ANN´s available, depending upon the specific problem attempted to 

be solved, such as classification, function approximation, prediction etc. In this work we will focus 
on two kinds: the Multilayer Perpectrons and the Radial Basis Function 

 

2.2.1 Mutilayer Perceptrons 

Multilayer perceptrons (MLPs) are layered feed-forward networks typically trained with static 
back-propagation. In this network, the input patterns are represented by the Input Processing 
Elements (or simple PE´s) where no calculation is made. The following sets of neurons are found in 



the hidden layer(s), and as soon as the ith input PE is inputed, the information is conducted to the jth 
PE in hidden layer through the weight Wij. So, the incoming data, in such element, is represented by 
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where aj is the linear combination of each Ii multiplied by Wij and will be the value used in the 
activation function (AF); to generate the output for the jth PE belonging to the next layer(s). The 
output of this element is given by. 
 

)( jj aAFY =   (8) 
 

 
Figure 6 – Schematic Structure of a PE   

 
The activation or transfer function is responsible to make the neuron more or less sensible to 

status changes on the network, and it can be linear, tangent, log etc. 
 

The ANN are considered to be “intelligent” because of their ability to learn about the process 
being mapped. The learning process is conducted, in basic terms, though the implementation of the 
back-propagation procedure. It consists of updating the network weights in the direction in which 
the  performance function decreases most rapidly. Once the output (Yj) is calculated, it is compared 
with the target value (tj). Then the following error is computed: 
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This error ej corresponds to just one output PE. There-fore the overall error (E vector) is 

expressed by:  
 

),...,,...,( 1 kj eeeE =   (10) 
 
Where k is the number of outputs. 
The error is then transmitted backwards fron the output layes to the input layer. The connection 

weights are updated by each PE, leading the network to converge. 
These networks have found their way into countless applications requiring static pattern 

classification. Their main advantage is that they are easy to use, and that they can approximate any 

W1j 

Wij 

Wnj 

aij AF Yj 



input/output map. The key disadvantages are that they train slowly, and require lots of training data 
(typically three times more training samples than network weights). 

 

2.2.2 Radial Basis Function 
Radial basis function (RBF) networks are nonlinear hybrid networks typically containing a 

single hidden layer of processing elements (PEs). This layer uses gaussian transfer functions, rather 
than the standard sigmoidal functions employed by MLPs. The centers and widths of the gaussians 
are set by unsupervised learning rules, and supervised learning is applied to the output layer. These 
networks tend to learn much faster than MLPs. 

 
A typical  RBF network is shown in Fig 7.  

 
Figure 7 – RBF network topology   

 
The network has p inputs and y outputs. The first layer is connected with the second or internal 

layer by weights that come from the inputs elements and the bias element. Weights from internal 
layer to outputs are also defined. Each element in the internal layer receives an input pattern vector 
and compares it with the mean weight vector that connects the input with second layer. The weight 
vector determines the position of the center of the radial hidden element in the input space. Here, 
the activation function is similar to a Gaussian density function. This function is defined as follows: 
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where xi is the mean and σi

2 is the variance, which needed to be calculated previously. 
 
The output F(x) is then obtained by linearization the Gaussian function outputs, using the 

network weights, as follow: 
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In short, we may say that Radial basis network is a very efficient network when function 

approximation is needed. This artificial neural network has the following characteristics: 
1. It is very fast in comparison to back-propagation; 
2. it has the ability of the representing nonlinear functions; 
3. It does not experience local minima problems of back-propagation. 
 



 
3. METHODOLOGY 

 
The methodology was based in applying a software package which can implement with 

confidence the ANN technique. It was used the NS package due to its easy of use and possibility to 
migrate the certified ANN to any application though a DLL implementation. 

 
We have generated 2 configurations of networks, one MLP and other RBF, and submitted to 

them both experimental and theoretical data for cutting force and roughness as per table 1, 2, 3 and 
4. The MLP net had 3-10-1 (input, hidden, output) configuration using tanh activation function, and 
the RBF the had the same configuration, however using the Gaussian functions. We have used 20% 
of the samples for cross validation. 

 
Table 1. Experimental data for Cutting 

Force based on machining parameters, turning 
system of mild steel (according to [13]) 

 
Vc f ap Fc 

(m/min) (mm/r) (mm) (N) 
29 0.212 1 457.1
22 0.107 1 276.2
17 0.107 1 238.1
13 0.212 1 333.3
29 0.212 1.2 571.4
22 0.212 1.2 457.4
17 0.212 1.2 476.2
13 0.107 1.2 323.8
29 0.212 1.5 523.8
22 0.212 1.5 619.1
17 0.212 1.5 523.8
13 0.212 1.5 428.5

 

Table 2. Theoretical data for Cutting 
Force based on machining parameters  

 
Vc f ap Fc 

(m/min) (mm/r) (mm) (N) 
29 1 0,212 445,2
22 1 0,107 224,7
17 1 0,107 224,7
13 1 0,212 445,2
29 1,2 0,212 534,24
22 1,2 0,212 534,24
17 1,2 0,212 534,24
13 1,2 0,107 269,64
29 1,5 0,212 667,8
22 1,5 0,212 667,8
17 1,5 0,212 667,8
13 1,5 0,212 667,8

 

The theoretical data were calculated though equation (1), using a constant value of Ks = 2100 
N/mm2 

 



Table 3. Experimental data for Roughness 
based on machining parameters, turning 
system of hard steel (according to [11]) 

Vc f ap rε Rmax 
(m/min) (mm/r) (mm) (mm) (µm) 

150 0.2 1 0.8 8,0
200 0.2 1 0.8 17,0
300 0.2 1 0.8 10,0
300 0.2 1 0.8 8,0
350 0.2 1 0.8 12,0
200 0.2 0.4 0.8 9,0
200 0.2 0.5 0.8 9,0
200 0.2 1 0.8 9,0
200 0.2 1.2 0.8 7,0
200 0.2 1.5 0.8 7,0
200 0.1 0.7 0.8 3,0
200 0.14 0.7 0.8 9,0
200 0.2 0.7 0.8 9,0
200 0.24 0.7 0.8 13,0
200 0.28 0.7 0.8 16,0
200 0.07 0.8 0.4 7.5
200 0.095 0.9 0.4 7,0
200 0.14 0.10 0.4 9,0
200 0.17 0.11 0.4 12,0
200 0.2 0.12 0.4 14,0
 

Table 4. Theoretical data for Roughness 
based on machining parameters, eq. [5] 

 
Vc f ap rε Rmax 

(m/min) (mm/r) (mm) (mm) (µm) 
150 0.2 1 0.8 4.0
200 0.2 1 0.8 4.0
300 0.2 1 0.8 4.0
300 0.2 1 0.8 4.0
350 0.2 1 0.8 4.0
200 0.2 0.4 0.8 4.0
200 0.2 0.5 0.8 4.0
200 0.2 1 0.8 4.0
200 0.2 1.2 0.8 4.0
200 0.2 1.5 0.8 4.0
200 0.1 0.7 0.8 1.0
200 0.14 0.7 0.8 2.0
200 0.2 0.7 0.8 4.0
200 0.24 0.7 0.8 5.8
200 0.28 0.7 0.8 7.8
200 0.07 0.8 0.4 0.2
200 0.095 0.9 0.4 0.5
200 0.14 0.1 0.4 1.0
200 0.17 0.11 0.4 1.4
200 0.2 0.12 0.4 2.0
 

4. RESULTS 
 

4.1 Force Analysis 
Below, we placed the main results in graphic form (Fc x Desired Fc). 

 

 
 

Figure 8 – Training results for the 
theoretical equation – MLP topology (force vs 

sample number) 
 
The mean squared error calculated for this 

case was MSE = 0,0027. 
 

 
 

Figure 9 – Training results for the 
experimental data – RBF topology (force vs 

sample number) 
 

 



 
 

Figure 10 – Training results for the experimental data – MLP topology (force vs sample 
number) 

 

4.2 Roughness Analysis 
Below, we placed the main results in graphic form (Rmáx x Desired Rmáx). 

 

 
 

Figure 11 – Training results for the 
experimental data – MLP topology 

 

 
Figure 12 – Training results for the 

experimental data – RBF topology 
 

 
 

Figure 13 – Training results for the 
theoretical data – RBF topology 

 

 
5. CONCLUSIONS 

 
Although the training data were too small, we have noticed that the neural net approach on both 

configuration (MLP and RBF) could reach to very close values, especially to the experimental data 
were no formula behavior exists. Also, in terms of performance we could verify that the RBF 



configuration had converged quite fast when compared to MLP similar net. When around 1000 
iterations were need in MLP net to calculate the final weights, only 50 iterations were done by the 
RBF one. 

The next step is to create an ANN library and embed in an Educational CNC Programming 
Software in order to make predictions about force and roughness, in rough or finishing operations, 
respectively. 
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