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ABSTRACT

Application of a partitioned procedure for the aeroelaatialysis of a delta wing immersed in a compressible
flow is presented in this work. Structural and flow simulasicaare performed with different codes using the Finite
Element Method (FEM). Geometrically nonlinear effects im@rporated to a triangular shell element with a corota-
tional formulation. Compressible flow simulations are paried by the two-step explicit Taylor-Galerkin (T-G) meatho
employing moving meshes based on the Arbitrary Lagrangialerian (ALE) formulation of the governing equations.
Simple and efficient algorithms are adopted to deal withtifierimation exchanged between non-matching meshes in the
fluid-structure interface boundary and for the fluid mesh emognt. The aeroelastic behavior of a steel delta wing due to
flows with different dynamic pressures is investigated. URecompare very well with other numerical works, but good
agreement with respect to experimental data is only ohddimetests with moderated wing displacements.

Keywords: Finite elements, Nonlinear dynamics, Aeroelasticity

1 INTRODUCTION

Determination of the interaction of fluid flow and flexiblelgttures is a fundamental require-
ment in a growing number of engineering applications. Asteity is one of the most important
classes of fluid-structure interaction (FSI) problems.slparticularly relevant for aeronautical de-
signs, where structure is subjected to usually high speaeftbai. This problem is characterized by
a cyclic process where structure is deformed under aerodigrfarces and flow is modified due to
change of solid boundary caused by structural displacesndihite aeroelastic analysis is concerned
with the significant mutual interaction among inertial sti@and aerodynamic forces present in those
cases]]. The importance of these interaction phenomenon inceeasenore light and slender struc-
tures are obtained by the use of advanced materials and moeegign techniques, adopted to achieve
project requirements.

The objective of a FSI analysis is to determine the behaviifluml-structure coupled system
subjected to perturbations of the initial configuration pBeding on flow conditions these perturba-
tions may be damped or they may grow indefinitely, producipgtantially catastrophic phenomenon
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known as flutter. Alternatively, structural vibration mag bustained with limited amplitude. This
phenomenon is known as limit cycle oscillation (LCO) and @&s$sociated to the presence of nonlin-
earity in fluid and structure?)].

This work deals specifically with the aeroelastic analy$ia oropped delta wing, formed by
a steel plate, in a compressible flow, which is a good reptasen of flexible wings of modern un-
manned combat aircraft8][ The problem analyzed here was experimentally investyaiy 4] for
flow conditions with fixed Mach number but with dynamic pregswarying form values where LCO
starts and growing until flutter takes place. Progressimstye sophisticated approaches were used
in the works of p], [3], [2] and [6] for the numerical simulation of this problem. The incremeh
model complexity used for the FSI analysis enhanced simonlguality for cases with low amplitude
LCO. However, numerical tests underpredicted wing vibregifor flow conditions close to flutter.

The present work investigates the application of a propasetkrical scheme to the aeroelastic
analysis of the cropped delta wing studied Bydnd compare the results to previous numerical works
on the same problem. The computational methods used forr&B}sas are presented in Sectian
The improved serial staggered scheme (1IS$)9 adopted to solve the coupled problem, allowing
to use independent methods for the simulation of fluid anacgire. Information is transferred in
fluid-structure boundary interface by the node-projecgoheme 8], which showed to be efficient
for the problem solved.

The explicit two-step Taylor-Galerkin scheme is employed the simulation of compress-
ible flows using tetrahedral finite elements for fluid domascrketization. An algebraic scheme is
adopted to define the fluid mesh motion for adaptation to ngpliwundary determined by structure
displacements. This method is very simple and numericalieffi, but there is no prevention with
respect to excessive mesh distortion.

Structure is simulated using a triangular flat shell elenj@hivhich is able to handle thin and
moderately thick sections of isotropic or laminated conmeosiaterials. Geometrical nonlinearity
is incorporated by the element independent corotatiomahdtation (EICR) LO]. The nonlinear
structural dynamic integration is performed by the impl&theme called approximately energy-
conserving corotational procedure (AECCR)][

2 COMPUTATIONAL METHOD

Theoretical aspects of computational methods adoptedfeing FSI are briefly presented in
the following sections. Structural analysis and fluid dymasmulation are independently discussed
due to partitioned nature of the FSI technique employed. here

2.1 Geometrically nonlinear structural dynamics

The finite element code implemented I8} [s adopted for the structural dynamic analysis.
Spatial discretization is performed by 3-noded triangslall elements with three translations and
three rotations as nodal degrees of freedom. The shell eldsi®rmed by a membrane element for-
mulated by 12] and a plate element developed dy3]. Moderately thick shell of isotropic materials
or laminated composites can be considered and transvexaeddformation is taken into account by
the first order theory (FSDT).

Geometrically nonlinear behavior is incorporated in thalgsis by applying the element inde-
pendent corotational formulation (EICR)(] to the shell element, which is originally obtained from
linear formulations. The main characteristic of EICR is thenplete separation of corotational filter-
ing of the deformational displacements from the core eldrfeemulation. Arbitrary large rotations
and translations are correctly analyzed, but only smalirstare allowed due to limitations of EICR
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and core element formulation.
For each element, variations of deformational displacesgsy, in the attached corotational
system are obtained from variations of global displaceswhusing the relation

5pq = HP Téd = A 6d (1)

where the matrixA = HPT comprises three operations, namely: local to global refsresystem
transformation given by matri¥', deformational displacements extraction by the projectatrix P
and conversion of spin vectors (representing variatiomtaftions indd) into additive rotations (used
in 6py for compatibility with local element formulation), whicls performed by the matrii and
necessary when large rotations are present. Detailedsdieris on corotational theory are given in
referencesl4, 11, 15|.

Time integration is performed using the approximately ggperonserving corotational proce-
dure (AECCP). This implicit scheme was developed 1] ps an approximation to the corotational
mid-point dynamic algorithm16], and it was introduced in order to conserve the full energthe
mechanical system. It is a class of mid-point algorithm Wwhgcconstructed by equating the change
of total momentum of the body to the impulse of internal anttal forces acting on the system
during the time stepl[7]. The equilibrium equation is given by E@)( where,A¢*, A¢® and A¢’
are the kinetic, external and strain energy incrementsdrtithe step, respectively.

AP+ AP+ A¢° = (Fpgsm + fin — ) Ad = g, Ad =0 2)

finasm, fe.m @ndf; ,,, are the mid-point inertial, external and internal nodairedat forces, respectively.
The mid-point vectors form an equivalent force vegigrthat may vanish, approximately conserving
the total energy of the system. In each time step the advarmmoamducted by a predictor step followed
by corrector iteractions in order to approagh to zero, as described i1]] and [9]. The mid-point
equilibrium condition adopted in AECCP is particularly sbiafor the application in fluid-structure
analysis with the partitioned scheme used in this work, tviscdescribed in Sectiod.3. Previous
experience in using AECCP for FSI analysis was reported.Bl [

2.2 Computational fluid dynamics

In this work the unsteady compressible flow is modeled by thleffequations, which are given
in vectorial form by

oUu  OF;
whereU is the vector of conservation variables aRd is the vector of advective fluxes in the
coordinate direction. A previous worB][showed that Euler equations are well suited to this problem
because viscous effects have low influence in the aercelashavior of the cropped delta wing .
For FSI analysis, flow equations must be integrated in a ngogomain, which is accomplished by
adopting the Arbitrary Lagrangian-Eulerian (ALE) destiop [19]. Based on ALE formulation Eq.
(3) turns to

=0, (i=1,2,3) (3)

T o U (=123) )
with H; = (F; — w;U) andw; being the velocity of the reference domain in the directibocmrdi-
natezx;.
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The explicit two-step Taylor-Galerkin metho@() is adopted for the nonlinear fluid solution.
This scheme results from discretizing time dimension byydoFaseries expansion @ followed by
the spatial discretizations of the resulting system ofigkdifferential equations using the FEM. The
Taylor series expansion &f, which is assumed to be known at timeresults in

n+1/2
AU = AtaUT )

whereAU = U™ — U" and

n+1/2 n+1/2
ot 8$z 833'1

with U2 = U™ 4 0.5At 25~
The system of conservatlon equations given in E§)—(p) is decoupled, so that the spatial
discretization using FEM can be applied to each equatioars¢gly, and it may be written in a

general form as
Au = At _Oh; _ow w2 (7

Applying Galerkin method to Eq. 7§, with u, h; andw; approximated by interpolation of
nodal valuesi, h, andw,) using element shape functiohsand interpolating:.”*'/? by piecewise
constant function® ., gives, after integrating by parts,

NN7 dV Al = —At / oN (h”“”) dV
8:@-

= Atgw’ / NP, dVi"/? + At / N (h*) i aa
T A,

(8)

wheren; is the component of the normal vector in the boundary of threaln. "'/ represents

evaluated in the center of the element in time 1/2, which is explicitly defined by Eq.9) in terms
of known variables at time when linear tetrahedron elements are adopted for spasiatetization
of the fluid domain

At Qw; At ONT _
ant+1/2 _ = v\ ~n
B (1 2 8xi> Y Oz; by ©)

Using linear tetrahedron elements also simplifies the natemn in Eq. 8), which becomes
explicitly defined and it may be evaluated after solving E9). it the same loop over the elements
[20, 21], improving the computational efficiency. The system ofa&pns resulting from spatial and
temporal discretization is solved iteratively using thidiwing equation

Aty = M; ! (f _ MAﬁi> + AR, (10)

whereM andM, are the consistent and lumped mass matrices, respeciiislthye vector resulting
form the integrals in the right hand side of E4.0( and the tilde indicates a global array. Artificial
dissipation 2] is introduced in order to prevent oscillations of flow figldghich may occur in the
proximity of shock regions due to numerical instabiliti@S][ The size of the time steps is limited
by Courant-Friedrichs-Lewy condition (CFL), as it is usuaéxplicit schemes.
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In FEM analysis of FSI problems the mesh must move in ordec¢ormmodate the deflections
of the flexible bodies that determine part of the boundaryhefftuid domain. The mesh velocity
field is independent with respect to fluid motion and must dendd by a separate formulation. In
this work a very simple algebraic scheme is adopted for thipgse. The velocity of a given internal
node: of the fluid mesh is determined by the velocity of the closestifhode; lying in the moving
boundary belonging to the structure. It is given by the fwllay expression

Qjj

= —2— | w; 11
W <CLU + aik) Wi ( )

wherea;; = (d;;)~™ is a coefficient determined by the distanggeform the internal nodeto a node

j in the moving boundary while;;, depends on the distance to the closest node in the fixed portio

of the boundary. The exponemtdetermines the variation of influence of boundary velocitgrahe

mesh velocity in the interior of the domain, being adopte8 asall problems solved in this work.

2.3 Fluid-structure interaction

The improved serial staggered (ISS) procedure du&]tes[employed to solve the nonlinear
aeroelastic problem in the current work. This is a looselypted time integrator allowing fluid-
structure analysis using specialized methodologies foh di@ld. Compatibility and equilibrium
conditions in the fluid-structure interface is achievedhwaiit subiterations. ISS is shown to be third-
order accurate in terms of energy transfaf][and coupling time steps comparable to monolithic
methods and strongly coupled methods can be used, mangajood solution accuracy]|

The steps of the adopted staggered algorithm are scheihatilcstrated in Fig. 1. A time-
lag equal to half of the coupling time step exist between fand structure integration, ensuring
satisfaction of geometric conservation Ia®b]. Due to this characteristic, mid-point rule algorithms
like AECCP are particularly suitable to use with ISS, since-pueht external load. ,,,, presented in
Eq. (2), is directly obtained by fluid forces over the wet surface.

ng/s X Atp = Atg nF/SXAtF:AtS

le ole »l
[ T |
Xn—l/Z @ Xn+1/2 @ Xn+3/2
| Un—l/Q Un+1/2 Un+3/2
|Fluid >
Interface
I'r/s o
Structure>
{u,a,i}" {u,a, i}
L Atg J
~ |

Figure 1: Improved Stagered Scheme with subcicling

Fluid-subcycling is adopted in order to efficiently accondate the different time stepst
andAtg required by the explicit CFD solver and the implicit struetiolynamic solver, respectively.
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A number of fluid time steps /s = Atg/Atp is performed for each coupling time step, which is
taken equal ta\ts.

Fluid and structure meshes are non-matching in their mterboundaries and they are handled
in order to allow the most efficient discretization for eacbdium. Fluid forced' and structural
velocity uig are transmitted between non-matching interfaces by the-pooiection schemes], as
depicted in Fig.2. Each fluid node on fluid-structure interface boundaly;,s is projected on a
structural element, and natural coordinates of poininto the element(;) are calculated.

Fluid Mesh
t oo t/h t AN TN
9® 2 '® .‘@ '® 9@ Q® Q
Fi Fi Fi  Fp F Fi FLiF%

SOS I B I B A

b up(Gl  us(Gl (o) WGl up(Ge up(Gl  ul

® & & . ® - . ¥ ®
*@ C2 ¢ Ca t@ ¢ Co ¢r ¢®
F}, F2 F3,

Structure Mesh
Figure 2: Nodal projection scheme

Fluid forces are transferred to a structural nogey

Ne ng

-3 (L ) @)
e=1 i=1 e

wheren; is the number of fluid nodeprojected on each one of the structural elements connected

to node;j and N, is the element shape function corresponding to this nodeinias procedure,

given in Eq. (3), is employed to transfer velocity from the structural mesfiuid nodes in'p/s.

nnel

W, =Y Nj(¢,)i), (13)
j=1

3 NUMERICAL TESTS

This section reports the application of the computationethmds described above to FSI anal-
ysis of a crooped delta wing, which planform is shown in FdgThe structure is formed by a 0.888
mm thick plate of steel with blunt trailing and leading edgesl clamped boundary condition at the
root. Material properties are: Young’s modulus of 200a, Poisson'’s ratio of 0.3 and specific mass
of 7850kg/m?>.

Figure4 presents th€0 x 20 structured FEM mesh employed for the structure discretizat
in all tests.

The natural mode shape and frequencies of the wing are a&dulising the FEM mesh of
Fig. 4. Results obtained are shown in Flgand agree very well with data reported by other authors
[4, 2, 6], ensuring FEM model validity.
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Figure 3: Wing geometry
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Figure 4: Mesh for the cropped delta wing

Wind-tunnel flow conditions reported by][are used for the simulations in the current work.
A Mach number equal to 0.87 and zero angle of attack are fixgghalic pressurésof 2.58 psi
(17.79k Pa) and 2.98 psiZ0.55k Pa) are adopted for the investigation of the wing aeroelastital-
ior.

An unstructured FEM mesh with more than 2.5 million tetrabed and 445 thousand nodes
is employed for the fluid discretization. About 32 thousandes are on the fluid-structure boundary
interface. Figuré shows the FEM mesh over the wing and some details close te#unlg edge
and the tip of the wing, where more refined discretizationdsassary. Initial flow conditions are
obtained by a previous converged steady state simulatienav undeformed wing configuration.
The fluid-structure interaction is triggered by a pertuidrabf the structure in the form of a initial
velocity field proportional to its first bending mode.

The aeroelastic behavior of the wing has been experimgntalestigated by 4] and many
numerical works 3, 2, 6] have been conducted trying to simulate the observed phenamThe
analyses performed in this work are presented togetherawitiparison to available references.

The flow conditions used for FSI analyses correspond to thmbig of the dynamic pressure
rage investigated i experiments and previous computational works relatedisogroblem 2, 6].

A Courant number of 0.2 is adopted for the CFD algorithm ard = 5.0 x 10~°s is used for the
structural time-marching scheme.

Figure7 depicts the dynamic response of the wing by the dimensisrdeplacement of the

IPressure is given in psi (1 psi = 6895Pa) in order to easy cosguewith other authors
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Figure 5: Natural frequencies and mode shapes of the wing

Figure 6: Mesh of the fluid close to the cropped delta wing

trailing-edge tip, when subjected to a dynamic pressuraldqu.58 psi. The limit-cycle oscillation
(LCO) phenomenon is observed after a brief transient motaximum amplitudeu. /L = 0.028
and oscillation frequency = 43.5H =z obtained in this work are compatible with experimental mea-
surements4] u,/L = 0.030 and f = 43.6 H z.

Simulation with a dynamic pressure of 2.98 psi resulted inregvioehavior similar to that of
the previous analysis, as it is shown in F&.where LCO amplitude:, /L = 0.062 and frequency
f = 45.5Hz are observed. Results of current work are almost the sameosé thbtained byq],
which are the best numerical simulation reported for thsecdut LCO amplitude is significantly
lower than the experimental value,( L = 0.1).

Previous studies3] 2, 6] reported increasing discrepancies between computelaioos and
experimental results for flows with higher dynamic pressuiidne apparent cause of this behavior is
the inability of employed CFD models to reproduce all impoti@erodynamic phenomena when the
wing develops large displacements. Results of referesjafroborate this assumption since incor-
poration of advanced structure models considering matnih geometrical nonlinearities together
with enhanced schemes for load and displacements trandfeid-structure interface boundary were
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Figure 7: Wing tip displacement for q = 2.58 psi

not able to significantly improve the FSI analysis.

Figure9 shows the pressure field of the flow over the wing deformed gardtion (withx 10
magnification) at time t = 0.1625s. A low pressure region egatithe leading-edge, where the onset
of aerodynamic effects may occur. However, these aerodyrgifiects can not be reproduced by the
mesh or the inviscid flow model employed in this study.

Time history of drag forceK'r,), lift force (#'r.) and moments aboutandy axes are presented
in figures10, 11 and 12, respectively. These aerodynamic effects are calculatede fluid mesh
over the fluid-structure boundary (designatkd and in the mesh of the structure (designasegl
Transmission of aerodynamic forces from the fluid to thecstme at the interface is demonstrated
to be correct by the perfect match of the quantities measusid) data of each mesh over the entire
simulation.

It is observed from figure8 and 11 that lift is 180 degrees out of phase with respect to wing
transverse displacement, acting as a springlike forceallaatys restores the wing to its undeformed
configuration. The same condition is reported 8y vhere lift was considered to be proportional to
the angle of attack that was actually measured in the expetinThis phenomena is assumed to be
the mechanism responsible for sustaining LCO since no netagddss of energy occurs during each
cycle.

The history of the number of fluid subcycles for each struetime step /) during FSI
analysis with a dynamic pressure of 2.98 psi is shown in E&y A periodic variation similar to wing
vibration is observed, demonstrating that fluid criticaiei step is dependent of flow condition and
mesh distortion. The mean valuewf,z is 2090 and 2103 for simulations with dynamic pressures
of 2.58 psi and 2.98 psi, respectively.
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Figure 8: Wing tip displacement for q = 2.98 psi

Figure 9: Pressure over the wing for q = 2.98 psi
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Figure 10: Drag f'r,) due to aerodynamic forces for q = 2.98 psi
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Figure 11: Lift (F'r.) due to aerodynamic forces for g = 2.98 psi
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Figure 12: Moment due to aerodynamic forces for g = 2.98 psi
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4 CONCLUSIONS

In spite of simple algorithms used in this work for mesh moeairand load transfer in the
FSI boundary interface, the results presented here arecl@sg to the best numerical simulations
reported by other authors for the same problem. The methggalas best suited for cases where
wing displacements have moderate amplitudes, resultisgadl instantaneous local angles of attack
during simulation. The identification of flow conditions wha wing perturbation is damped by the
fluid or when LCO phenomenon takes place can be performed lind&tions mentioned above.

It is also shown that correct FSI simulations can be obtainbdn shell elements are used
to model the structure. The inherent gap between FSI irtesfalue to the structural modeling in
this case is pointed byg] to be one of the reasons of poor results obtained in pastsiduk to the
reduced accuracy in load transfer. Simulations confirmedt It and wing displacements are 180
degrees out of phase as supposedpywyho related the oscillatory behavior to this condition.
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