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ABSTRACT

Application of a partitioned procedure for the aeroelasticanalysis of a delta wing immersed in a compressible
flow is presented in this work. Structural and flow simulations are performed with different codes using the Finite
Element Method (FEM). Geometrically nonlinear effects areincorporated to a triangular shell element with a corota-
tional formulation. Compressible flow simulations are performed by the two-step explicit Taylor-Galerkin (T-G) method
employing moving meshes based on the Arbitrary Lagrangian-Eulerian (ALE) formulation of the governing equations.
Simple and efficient algorithms are adopted to deal with the information exchanged between non-matching meshes in the
fluid-structure interface boundary and for the fluid mesh movement. The aeroelastic behavior of a steel delta wing due to
flows with different dynamic pressures is investigated. Results compare very well with other numerical works, but good
agreement with respect to experimental data is only obtained for tests with moderated wing displacements.

Keywords: Finite elements, Nonlinear dynamics, Aeroelasticity

1 INTRODUCTION

Determination of the interaction of fluid flow and flexible structures is a fundamental require-
ment in a growing number of engineering applications. Aeroelasticity is one of the most important
classes of fluid-structure interaction (FSI) problems. It is particularly relevant for aeronautical de-
signs, where structure is subjected to usually high speed air flow. This problem is characterized by
a cyclic process where structure is deformed under aerodynamic forces and flow is modified due to
change of solid boundary caused by structural displacements. The aeroelastic analysis is concerned
with the significant mutual interaction among inertial, elastic and aerodynamic forces present in those
cases [1]. The importance of these interaction phenomenon increases as more light and slender struc-
tures are obtained by the use of advanced materials and modern design techniques, adopted to achieve
project requirements.

The objective of a FSI analysis is to determine the behavior of fluid-structure coupled system
subjected to perturbations of the initial configuration. Depending on flow conditions these perturba-
tions may be damped or they may grow indefinitely, producing apotentially catastrophic phenomenon
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known as flutter. Alternatively, structural vibration may be sustained with limited amplitude. This
phenomenon is known as limit cycle oscillation (LCO) and it isassociated to the presence of nonlin-
earity in fluid and structure [2].

This work deals specifically with the aeroelastic analysis of a cropped delta wing, formed by
a steel plate, in a compressible flow, which is a good representation of flexible wings of modern un-
manned combat aircrafts [3]. The problem analyzed here was experimentally investigated by [4] for
flow conditions with fixed Mach number but with dynamic pressures varying form values where LCO
starts and growing until flutter takes place. Progressivelymore sophisticated approaches were used
in the works of [5], [3], [2] and [6] for the numerical simulation of this problem. The increment of
model complexity used for the FSI analysis enhanced simulation quality for cases with low amplitude
LCO. However, numerical tests underpredicted wing vibrations for flow conditions close to flutter.

The present work investigates the application of a proposednumerical scheme to the aeroelastic
analysis of the cropped delta wing studied by [4] and compare the results to previous numerical works
on the same problem. The computational methods used for FSI analysis are presented in Section2.
The improved serial staggered scheme (ISS) [7] is adopted to solve the coupled problem, allowing
to use independent methods for the simulation of fluid and structure. Information is transferred in
fluid-structure boundary interface by the node-projectionscheme [8], which showed to be efficient
for the problem solved.

The explicit two-step Taylor-Galerkin scheme is employed for the simulation of compress-
ible flows using tetrahedral finite elements for fluid domain discretization. An algebraic scheme is
adopted to define the fluid mesh motion for adaptation to moving boundary determined by structure
displacements. This method is very simple and numerical efficient, but there is no prevention with
respect to excessive mesh distortion.

Structure is simulated using a triangular flat shell element[9] which is able to handle thin and
moderately thick sections of isotropic or laminated composite materials. Geometrical nonlinearity
is incorporated by the element independent corotational formulation (EICR) [10]. The nonlinear
structural dynamic integration is performed by the implicit scheme called approximately energy-
conserving corotational procedure (AECCP) [11].

2 COMPUTATIONAL METHOD

Theoretical aspects of computational methods adopted for solving FSI are briefly presented in
the following sections. Structural analysis and fluid dynamic simulation are independently discussed
due to partitioned nature of the FSI technique employed here.

2.1 Geometrically nonlinear structural dynamics

The finite element code implemented by [9] is adopted for the structural dynamic analysis.
Spatial discretization is performed by 3-noded triangularshell elements with three translations and
three rotations as nodal degrees of freedom. The shell element is formed by a membrane element for-
mulated by [12] and a plate element developed by [13]. Moderately thick shell of isotropic materials
or laminated composites can be considered and transverse shear deformation is taken into account by
the first order theory (FSDT).

Geometrically nonlinear behavior is incorporated in the analysis by applying the element inde-
pendent corotational formulation (EICR) [10] to the shell element, which is originally obtained from
linear formulations. The main characteristic of EICR is the complete separation of corotational filter-
ing of the deformational displacements from the core element formulation. Arbitrary large rotations
and translations are correctly analyzed, but only small strain are allowed due to limitations of EICR
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and core element formulation.
For each element, variations of deformational displacements δp̄d in the attached corotational

system are obtained from variations of global displacements δd using the relation

δp̄d = H̄P̄Tδd = Λ δd (1)

where the matrixΛ = H̄P̄T comprises three operations, namely: local to global reference system
transformation given by matrixT, deformational displacements extraction by the projectormatrix P̄
and conversion of spin vectors (representing variation of rotations inδd) into additive rotations (used
in δp̄d for compatibility with local element formulation), which is performed by the matrix̄H and
necessary when large rotations are present. Detailed discussions on corotational theory are given in
references [14, 11, 15].

Time integration is performed using the approximately energy-conserving corotational proce-
dure (AECCP). This implicit scheme was developed by [11] as an approximation to the corotational
mid-point dynamic algorithm [16], and it was introduced in order to conserve the full energy of the
mechanical system. It is a class of mid-point algorithm which is constructed by equating the change
of total momentum of the body to the impulse of internal and external forces acting on the system
during the time step [17]. The equilibrium equation is given by Eq.(2), where,∆φk, ∆φe and∆φi

are the kinetic, external and strain energy increments in the time step, respectively.

∆φk +∆φi +∆φe = (fTmas,m + fTi,m − fTe,m)∆d = gT
m∆d = 0 (2)

fmas,m, fe,m andfi,m are the mid-point inertial, external and internal nodal element forces, respectively.
The mid-point vectors form an equivalent force vectorgm that may vanish, approximately conserving
the total energy of the system. In each time step the advance is conducted by a predictor step followed
by corrector iteractions in order to approachgm to zero, as described in [11] and [9]. The mid-point
equilibrium condition adopted in AECCP is particularly suitable for the application in fluid-structure
analysis with the partitioned scheme used in this work, which is described in Section2.3. Previous
experience in using AECCP for FSI analysis was reported by [18].

2.2 Computational fluid dynamics

In this work the unsteady compressible flow is modeled by the Euler equations, which are given
in vectorial form by

∂U

∂t
+

∂F i

∂xi

= 0, (i = 1, 2, 3) (3)

whereU is the vector of conservation variables andF i is the vector of advective fluxes in thexi

coordinate direction. A previous work [3] showed that Euler equations are well suited to this problem
because viscous effects have low influence in the aeroelastic behavior of the cropped delta wing .
For FSI analysis, flow equations must be integrated in a moving domain, which is accomplished by
adopting the Arbitrary Lagrangian-Eulerian (ALE) description [19]. Based on ALE formulation Eq.
(3) turns to

∂U

∂t
= −

∂H i

∂xi

−

∂wi

∂xi

U , (i = 1, 2, 3) (4)

with H i = (F i − wiU ) andwi being the velocity of the reference domain in the direction of coordi-
natexi.
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The explicit two-step Taylor-Galerkin method [20] is adopted for the nonlinear fluid solution.
This scheme results from discretizing time dimension by a Taylor series expansion ofU followed by
the spatial discretizations of the resulting system of partial differential equations using the FEM. The
Taylor series expansion ofU , which is assumed to be known at timen, results in

∆U = ∆t
∂Un+1/2

∂t
(5)

where∆U = Un+1
−Un and

∂Un+1/2

∂t
= −

∂H
n+1/2
i

∂xi

−

∂wi

∂xi

Un+1/2 (6)

with Un+1/2 = Un + 0.5∆t∂U
n

∂t
.

The system of conservation equations given in Eq. (5)–(6) is decoupled, so that the spatial
discretization using FEM can be applied to each equation separately, and it may be written in a
general form as

∆u = ∆t

(

−

∂h
n+1/2
i

∂xi

−

∂wi

∂xi

un+1/2

)

(7)

Applying Galerkin method to Eq. (7), with u, hi andwi approximated by interpolation of
nodal values (̄u, h̄i andw̄i) using element shape functionsN and interpolatingun+1/2 by piecewise
constant functionsP(e) gives, after integrating by parts,

∫

Ve

NNT dV ∆ū = −∆t

∫

Ve

∂N

∂xi

(

h
n+1/2
i

)

dV

−∆t
∂wi

∂xi

∫

Ve

NP(e) dV ûn+1/2 +∆t

∫

Ae

N
(

h
n+1/2
i

)

ni dA

(8)

whereni is the component of the normal vector in the boundary of the domain. ûn+1/2 representsu
evaluated in the center of the element in timen+1/2, which is explicitly defined by Eq. (9) in terms
of known variables at timen when linear tetrahedron elements are adopted for spatial discretization
of the fluid domain

ûn+1/2 =

(

1−
∆t

2

∂wi

∂xi

)

ûn
−

∆t

2

∂NT

∂xi

h̄n
i (9)

Using linear tetrahedron elements also simplifies the integration in Eq. (8), which becomes
explicitly defined and it may be evaluated after solving Eq. (9) in the same loop over the elements
[20, 21], improving the computational efficiency. The system of equations resulting from spatial and
temporal discretization is solved iteratively using the following equation

∆ũi+1 = M̃−1
L

(

r̃− M̃∆ũi

)

+∆ũi (10)

whereM̃ andM̃L are the consistent and lumped mass matrices, respectively,r̃ is the vector resulting
form the integrals in the right hand side of Eq. (10) and the tilde indicates a global array. Artificial
dissipation [22] is introduced in order to prevent oscillations of flow fields, which may occur in the
proximity of shock regions due to numerical instabilities [23]. The size of the time steps is limited
by Courant-Friedrichs-Lewy condition (CFL), as it is usual inexplicit schemes.
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In FEM analysis of FSI problems the mesh must move in order to accommodate the deflections
of the flexible bodies that determine part of the boundary of the fluid domain. The mesh velocity
field is independent with respect to fluid motion and must be defined by a separate formulation. In
this work a very simple algebraic scheme is adopted for this purpose. The velocity of a given internal
nodei of the fluid mesh is determined by the velocity of the closest fluid nodej lying in the moving
boundary belonging to the structure. It is given by the following expression

wi =

(

aij
aij + aik

)

wj (11)

whereaij = (dij)
−m is a coefficient determined by the distancedij form the internal nodei to a node

j in the moving boundary whileaik depends on the distance to the closest node in the fixed portion
of the boundary. The exponentm determines the variation of influence of boundary velocity over the
mesh velocity in the interior of the domain, being adopted as3 in all problems solved in this work.

2.3 Fluid-structure interaction

The improved serial staggered (ISS) procedure due to [7] is employed to solve the nonlinear
aeroelastic problem in the current work. This is a loosely coupled time integrator allowing fluid-
structure analysis using specialized methodologies for each field. Compatibility and equilibrium
conditions in the fluid-structure interface is achieved without subiterations. ISS is shown to be third-
order accurate in terms of energy transfer [24] and coupling time steps comparable to monolithic
methods and strongly coupled methods can be used, maintaining good solution accuracy [7].

The steps of the adopted staggered algorithm are schematically illustrated in Fig. 1. A time-
lag equal to half of the coupling time step exist between fluidand structure integration, ensuring
satisfaction of geometric conservation law [25]. Due to this characteristic, mid-point rule algorithms
like AECCP are particularly suitable to use with ISS, since mid-point external loadfe,m, presented in
Eq. (2), is directly obtained by fluid forces over the wet surface.

Figure 1: Improved Stagered Scheme with subcicling

Fluid-subcycling is adopted in order to efficiently accommodate the different time steps∆tF
and∆tS required by the explicit CFD solver and the implicit structural dynamic solver, respectively.
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A number of fluid time stepsnF/S = ∆tS/∆tF is performed for each coupling time step, which is
taken equal to∆tS.

Fluid and structure meshes are non-matching in their interface boundaries and they are handled
in order to allow the most efficient discretization for each medium. Fluid forcesFF and structural
velocity u̇E are transmitted between non-matching interfaces by the node-projection scheme [8], as
depicted in Fig.2. Each fluid nodei on fluid-structure interface boundaryΓF/S is projected on a
structural elemente, and natural coordinates of pointi into the element (ζi) are calculated.

Figure 2: Nodal projection scheme

Fluid forces are transferred to a structural nodesj by

F
j
E =

ne
∑

e=1

(

nf
∑

i=1

N j
E(ζi)F

i
F

)

e

(12)

wherenf is the number of fluid nodesi projected on each one of thene structural elements connected
to nodej andN j

E is the element shape function corresponding to this node. A similar procedure,
given in Eq. (13), is employed to transfer velocity from the structural meshto fluid nodes inΓF/S.

u̇i
F =

nnel
∑

j=1

N j
E(ζi)u̇

j
E (13)

3 NUMERICAL TESTS

This section reports the application of the computational methods described above to FSI anal-
ysis of a crooped delta wing, which planform is shown in Fig.3. The structure is formed by a 0.888
mm thick plate of steel with blunt trailing and leading edgesand clamped boundary condition at the
root. Material properties are: Young’s modulus of 200GPa, Poisson’s ratio of 0.3 and specific mass
of 7850kg/m3.

Figure4 presents the20 × 20 structured FEM mesh employed for the structure discretization
in all tests.

The natural mode shape and frequencies of the wing are calculated using the FEM mesh of
Fig. 4. Results obtained are shown in Fig.5 and agree very well with data reported by other authors
[4, 2, 6], ensuring FEM model validity.
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Figure 3: Wing geometry
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Figure 4: Mesh for the cropped delta wing

Wind-tunnel flow conditions reported by [4] are used for the simulations in the current work.
A Mach number equal to 0.87 and zero angle of attack are fixed. Dynamic pressures1 of 2.58 psi
(17.79kPa) and 2.98 psi (20.55kPa) are adopted for the investigation of the wing aeroelastic behav-
ior.

An unstructured FEM mesh with more than 2.5 million tetrahedrons and 445 thousand nodes
is employed for the fluid discretization. About 32 thousand nodes are on the fluid-structure boundary
interface. Figure6 shows the FEM mesh over the wing and some details close to the leading edge
and the tip of the wing, where more refined discretization is necessary. Initial flow conditions are
obtained by a previous converged steady state simulation over an undeformed wing configuration.
The fluid-structure interaction is triggered by a perturbation of the structure in the form of a initial
velocity field proportional to its first bending mode.

The aeroelastic behavior of the wing has been experimentally investigated by [4] and many
numerical works [3, 2, 6] have been conducted trying to simulate the observed phenomena. The
analyses performed in this work are presented together withcomparison to available references.

The flow conditions used for FSI analyses correspond to the beginning of the dynamic pressure
rage investigated in [4] experiments and previous computational works related to this problem [2, 6].
A Courant number of 0.2 is adopted for the CFD algorithm and∆te = 5.0 × 10−5s is used for the
structural time-marching scheme.

Figure7 depicts the dynamic response of the wing by the dimensionless displacement of the

1Pressure is given in psi (1 psi = 6895Pa) in order to easy comparison with other authors
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f = 26.4 Hz
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f = 87.4 Hz
2

f = 131.8 Hz
3

Figure 5: Natural frequencies and mode shapes of the wing

Figure 6: Mesh of the fluid close to the cropped delta wing

trailing-edge tip, when subjected to a dynamic pressure equal to 2.58 psi. The limit-cycle oscillation
(LCO) phenomenon is observed after a brief transient motion.Maximum amplitudeuz/L = 0.028
and oscillation frequencyf = 43.5Hz obtained in this work are compatible with experimental mea-
surements [4] uz/L ∼= 0.030 andf ∼= 43.6Hz.

Simulation with a dynamic pressure of 2.98 psi resulted in a wing behavior similar to that of
the previous analysis, as it is shown in Fig.8, where LCO amplitudeuz/L = 0.062 and frequency
f = 45.5Hz are observed. Results of current work are almost the same of those obtained by [6],
which are the best numerical simulation reported for this case, but LCO amplitude is significantly
lower than the experimental value (uz/L = 0.1).

Previous studies [3, 2, 6] reported increasing discrepancies between computer simulations and
experimental results for flows with higher dynamic pressures. The apparent cause of this behavior is
the inability of employed CFD models to reproduce all important aerodynamic phenomena when the
wing develops large displacements. Results of reference [6] corroborate this assumption since incor-
poration of advanced structure models considering material and geometrical nonlinearities together
with enhanced schemes for load and displacements transfer in fluid-structure interface boundary were
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Figure 7: Wing tip displacement for q = 2.58 psi

not able to significantly improve the FSI analysis.
Figure9 shows the pressure field of the flow over the wing deformed configuration (with×10

magnification) at time t = 0.1625s. A low pressure region occurs at the leading-edge, where the onset
of aerodynamic effects may occur. However, these aerodynamic effects can not be reproduced by the
mesh or the inviscid flow model employed in this study.

Time history of drag force (Frx), lift force (Frz) and moments aboutx andy axes are presented
in figures10, 11 and12, respectively. These aerodynamic effects are calculated in the fluid mesh
over the fluid-structure boundary (designatedflu) and in the mesh of the structure (designatedstr).
Transmission of aerodynamic forces from the fluid to the structure at the interface is demonstrated
to be correct by the perfect match of the quantities measuredusing data of each mesh over the entire
simulation.

It is observed from figures8 and11 that lift is 180 degrees out of phase with respect to wing
transverse displacement, acting as a springlike force thatalways restores the wing to its undeformed
configuration. The same condition is reported by [4], where lift was considered to be proportional to
the angle of attack that was actually measured in the experiment. This phenomena is assumed to be
the mechanism responsible for sustaining LCO since no net gain or loss of energy occurs during each
cycle.

The history of the number of fluid subcycles for each structure time step (nF/E) during FSI
analysis with a dynamic pressure of 2.98 psi is shown in Fig.13. A periodic variation similar to wing
vibration is observed, demonstrating that fluid critical time step is dependent of flow condition and
mesh distortion. The mean value ofnF/E is 2090 and 2103 for simulations with dynamic pressures
of 2.58 psi and 2.98 psi, respectively.
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Figure 8: Wing tip displacement for q = 2.98 psi

Pressure

Figure 9: Pressure over the wing for q = 2.98 psi
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Figure 10: Drag (Frx) due to aerodynamic forces for q = 2.98 psi
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Figure 11: Lift (Frz) due to aerodynamic forces for q = 2.98 psi
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Figure 12: Moment due to aerodynamic forces for q = 2.98 psi
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Figure 13: Fluid subcyclingnF/E for q = 2.98 psi
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4 CONCLUSIONS

In spite of simple algorithms used in this work for mesh movement and load transfer in the
FSI boundary interface, the results presented here are veryclose to the best numerical simulations
reported by other authors for the same problem. The methodology was best suited for cases where
wing displacements have moderate amplitudes, resulting insmall instantaneous local angles of attack
during simulation. The identification of flow conditions when a wing perturbation is damped by the
fluid or when LCO phenomenon takes place can be performed underlimitations mentioned above.

It is also shown that correct FSI simulations can be obtainedwhen shell elements are used
to model the structure. The inherent gap between FSI interfaces due to the structural modeling in
this case is pointed by [6] to be one of the reasons of poor results obtained in past works due to the
reduced accuracy in load transfer. Simulations confirmed that lift and wing displacements are 180
degrees out of phase as supposed by [4], who related the oscillatory behavior to this condition.
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